Alternating Triangular Schemes for Second-Order Evolution Equations

被引:0
作者
P. N. Vabishchevich
机构
[1] Nuclear Safety Institute,
[2] Russian Academy of Sciences,undefined
[3] Ammosov Northeastern Federal University,undefined
来源
Computational Mathematics and Mathematical Physics | 2019年 / 59卷
关键词
second-order evolution equation; alternating triangular method; splitting schemes; stability of operator-difference schemes;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:266 / 274
页数:8
相关论文
共 7 条
  • [1] Vabishchevich P. N.(2014)Three-level schemes of the alternating triangular method Comput. Math. Math. Phys. 54 953-962
  • [2] Vabishchevich P. N.(2015)Explicit schemes for parabolic and hyperbolic equations Appl. Math. Comput. 250 424-431
  • [3] Samarskii A. A.(1964)An economical algorithm for the numerical solution of systems of differential and algebraic equations USSR Comput. Math. Math. Phys. 4 263-271
  • [4] Samarskii A. A.(1967)Regularization of difference schemes USSR Comput. Math. Math. Phys. 7 79-120
  • [5] Samarskii A. A.(1998)Regularized additive full approximation schemes Dokl. Math. 57 83-86
  • [6] Vabishchevich P. N.(2010)Regularized additive operator-difference schemes Comput. Math. Math. Phys. 50 428-436
  • [7] Vabishchevich P. N.(undefined)undefined undefined undefined undefined-undefined