On Derivations in Semiprime Rings

被引:0
作者
Shakir Ali
Huang Shuliang
机构
[1] Aligarh Muslim University,Department of Mathematics
[2] Chuzhou University,Department of Mathematics
来源
Algebras and Representation Theory | 2012年 / 15卷
关键词
Semi(prime) ring; Derivation; Centralizing and commuting mapping; 16N60; 16U80; 16W25;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a ring, S a nonempty subset of R and d a derivation on R. A mapping \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f:R\longrightarrow R$\end{document} is called commuting on S if [f(x),x] = 0 for all x ∈ S. In this paper, our purpose is to produce commutativity results for rings and show that if R is a 2-torsion free semiprime ring and I a nonzero ideal of R, then a derivation d of R is commuting on I if one of the following conditions holds: (i) d(x) ∘ d(y) = x ∘ y (ii) d(x) ∘ d(y) = − (x ∘ y) (iii) d(x) ∘ d(y) = 0 (iv) [d(x),d(y)] = − [x,y] (v) d(x) d(y) = xy (vi) d(x)d(y) = − xy (vii) d(x)d(y) = yx (viii) d(x)d(x) = x2 for all x,y ∈ I. Further, if d(I) ≠ 0, then R has a nonzero central ideal. Finally, some examples are given to demonstrate that the restrictions imposed on the hypotheses of the various results are not superfluous.
引用
收藏
页码:1023 / 1033
页数:10
相关论文
共 15 条
[1]  
Ashraf M(2002)On commutativity of rings with derivations Results Math. 42 3-8
[2]  
Rehman N(2001)On derivations and commutativity in prime rings East-West J. Math. 3 87-91
[3]  
Ashraf M(1987)Centralizing mappings of semiprime rings Canad. Math. Bull. 30 92-101
[4]  
Rehman N(1994)On commutativity and strong commutativity preserving maps Canad. Math. Bull. 37 443-447
[5]  
Bell HE(1993)Centralizing mappings and derivations in prime rings J. Algebra 156 385-394
[6]  
Martindale WS(1998)Commutativity results for semiprime rings with derivations Int. J. Math. & Math. Sci. 21 471-474
[7]  
Bell HE(1978)A note on derivation Canad. Math. Bull. 21 369-370
[8]  
Daif MN(1984)Centralizing mappings of prime rings Canad. Math. Bull. 27 122-126
[9]  
Brešar M(1957)Derivations in prime rings Proc. Amer. Math. Soc. 8 1093-1100
[10]  
Daif MN(1995)On ideals and orthogonal derivations J. SouthWest China Normal Univ. 20 137-140