Spectroscopy of few-electron single-crystal silicon quantum dots

被引:2
|
作者
Fuechsle, Martin [1 ]
Mahapatra, S. [1 ]
Zwanenburg, F. A. [1 ]
Friesen, Mark [2 ]
Eriksson, M. A. [2 ]
Simmons, Michelle Y. [1 ]
机构
[1] Univ New S Wales, Ctr Quantum Comp Technol, Sydney, NSW 2052, Australia
[2] Univ Wisconsin, Madison, WI 53706 USA
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
SPIN; PHOSPHINE; TRANSPORT;
D O I
10.1038/NNANO.2010.95
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A defining feature of modern CMOS devices(1) and almost all quantum semiconductor devices(2-9) is the use of many different materials. For example, although electrical conduction often occurs in single-crystal semiconductors, gates are frequently made of metals and dielectrics are commonly amorphous. Such devices have demonstrated remarkable improvements in performance over recent decades, but the heterogeneous nature of these devices can lead to defects at the interfaces between the different materials, which is a disadvantage for applications in spintronics(10,11) and quantum information processing(12-16). Here we report the fabrication of a few-electron quantum dot in single-crystal silicon that does not contain any heterogeneous interfaces. The quantum dot is defined by atomically abrupt changes in the density of phosphorus dopant atoms, and the resulting confinement produces novel effects associated with energy splitting between the conduction band valleys. These single-crystal devices offer the opportunity to study how very sharp, atomic-scale confinement-which will become increasingly important for both classical and quantum devices-influences the operation and performance of devices.
引用
收藏
页码:502 / 505
页数:4
相关论文
共 50 条
  • [21] Single- and few-electron dynamic quantum dots in a perpendicular magnetic field
    Wright, S. J.
    Thorn, A. L.
    Blumenthal, M. D.
    Giblin, S. P.
    Pepper, M.
    Janssen, T. J. B. M.
    Kataoka, M.
    Fletcher, J. D.
    Jones, G. A. C.
    Nicoll, C. A.
    Gumbs, Godfrey
    Ritchie, D. A.
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (10)
  • [22] Single- and Few-Electron States in Deformed Topological Insulator Quantum Dots
    李健
    张东
    Chinese Physics Letters, 2015, (04) : 105 - 108
  • [23] Thermopower of few-electron quantum dots with Kondo correlations
    Ye, LvZhou
    Hou, Dong
    Wang, Rulin
    Cao, Dewen
    Zheng, Xiao
    Yan, YiJing
    PHYSICAL REVIEW B, 2014, 90 (16):
  • [24] Tunable few-electron quantum dots in InAs nanowires
    Shorubalko, I.
    Pfund, A.
    Leturcq, R.
    Borgstroem, M. T.
    Gramm, F.
    Mueller, E.
    Gini, E.
    Ensslin, K.
    NANOTECHNOLOGY, 2007, 18 (04)
  • [25] Few-electron semiconductor quantum dots in magnetic field
    Ciftja, Orion
    PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 6, NO 4, 2009, 6 (04): : 825 - 828
  • [26] Excitation spectra of circular, few-electron quantum dots
    Kouwenhoven, LP
    Oosterkamp, TH
    Danoesastro, MWS
    Eto, M
    Austing, DG
    Honda, T
    Tarucha, S
    SCIENCE, 1997, 278 (5344) : 1788 - 1792
  • [27] Spectroscopy and level detuning of few-electron spin states in parallel InAs quantum dots
    Thelander, Claes
    Nilsson, Malin
    Bostrom, Florinda Vinas
    Burke, Adam
    Lehmann, Sebastian
    Dick, Kimberly A.
    Leijnse, Martin
    PHYSICAL REVIEW B, 2018, 98 (24)
  • [28] Few-electron open dots: Single level transport
    Zozoulenko, I.V.
    Sachrajda, A.S.
    Gould, C.
    Berggren, K.-F.
    Zawadzki, P.
    Feng, Y.
    Wasilewski, Z.
    Physical Review Letters, 83 (09):
  • [29] Few-Electron Single and Double Quantum Dots in an InAs Two-Dimensional Electron Gas
    Mittag, Christopher
    Koski, Jonne, V
    Karalic, Matija
    Thomas, Candice
    Tuaz, Aymeric
    Hatke, Anthony T.
    Gardner, Geoffrey C.
    Manfra, Michael J.
    Danon, Jeroen
    Ihn, Thomas
    Ensslin, Klaus
    PRX QUANTUM, 2021, 2 (01):
  • [30] Few-electron open dots: Single level transport
    Zozoulenko, IV
    Sachrajda, AS
    Gould, C
    Berggren, KF
    Zawadzki, P
    Feng, Y
    Wasilewski, Z
    PHYSICAL REVIEW LETTERS, 1999, 83 (09) : 1838 - 1841