Spectroscopy of few-electron single-crystal silicon quantum dots

被引:2
作者
Fuechsle, Martin [1 ]
Mahapatra, S. [1 ]
Zwanenburg, F. A. [1 ]
Friesen, Mark [2 ]
Eriksson, M. A. [2 ]
Simmons, Michelle Y. [1 ]
机构
[1] Univ New S Wales, Ctr Quantum Comp Technol, Sydney, NSW 2052, Australia
[2] Univ Wisconsin, Madison, WI 53706 USA
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
SPIN; PHOSPHINE; TRANSPORT;
D O I
10.1038/NNANO.2010.95
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A defining feature of modern CMOS devices(1) and almost all quantum semiconductor devices(2-9) is the use of many different materials. For example, although electrical conduction often occurs in single-crystal semiconductors, gates are frequently made of metals and dielectrics are commonly amorphous. Such devices have demonstrated remarkable improvements in performance over recent decades, but the heterogeneous nature of these devices can lead to defects at the interfaces between the different materials, which is a disadvantage for applications in spintronics(10,11) and quantum information processing(12-16). Here we report the fabrication of a few-electron quantum dot in single-crystal silicon that does not contain any heterogeneous interfaces. The quantum dot is defined by atomically abrupt changes in the density of phosphorus dopant atoms, and the resulting confinement produces novel effects associated with energy splitting between the conduction band valleys. These single-crystal devices offer the opportunity to study how very sharp, atomic-scale confinement-which will become increasingly important for both classical and quantum devices-influences the operation and performance of devices.
引用
收藏
页码:502 / 505
页数:4
相关论文
共 32 条
  • [1] Gate-defined quantum dots in intrinsic silicon
    Angus, Susan J.
    Ferguson, Andrew J.
    Dzurak, Andrew S.
    Clark, Robert G.
    [J]. NANO LETTERS, 2007, 7 (07) : 2051 - 2055
  • [2] Valley splitting in strained silicon quantum wells
    Boykin, TB
    Klimeck, G
    Eriksson, MA
    Friesen, M
    Coppersmith, SN
    von Allmen, P
    Oyafuso, F
    Lee, S
    [J]. APPLIED PHYSICS LETTERS, 2004, 84 (01) : 115 - 117
  • [3] Electronic structure models of phosphorus δ-doped silicon
    Carter, Damien J.
    Warschkow, Oliver
    Marks, Nigel A.
    McKenzie, David R.
    [J]. PHYSICAL REVIEW B, 2009, 79 (03)
  • [4] Dephasing of Si spin qubits due to charge noise
    Culcer, Dimitrie
    Hu, Xuedong
    Das Sarma, S.
    [J]. APPLIED PHYSICS LETTERS, 2009, 95 (07)
  • [5] Theory of nuclear-induced spectral diffusion: Spin decoherence of phosphorus donors in Si and GaAs quantum dots
    de Sousa, R
    Das Sarma, S
    [J]. PHYSICAL REVIEW B, 2003, 68 (11) : 1153221 - 11532213
  • [6] Elzerman JM, 2004, NATURE, V430, P431, DOI 10.1039/nature02693
  • [7] Direct measurement of the spin-orbit interaction in a two-electron InAs nanowire quantum dot
    Fasth, C.
    Fuhrer, A.
    Samuelson, L.
    Golovach, Vitaly N.
    Loss, Daniel
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (26)
  • [8] Practical design and simulation of silicon-based quantum-dot qubits
    Friesen, M
    Rugheimer, P
    Savage, DE
    Lagally, MG
    van der Weide, DW
    Joynt, R
    Eriksson, MA
    [J]. PHYSICAL REVIEW B, 2003, 67 (12): : 4
  • [9] Atomic-Scale, All Epitaxial In-Plane Gated Donor Quantum Dot in Silicon
    Fuhrer, A.
    Fuechsle, M.
    Reusch, T. C. G.
    Weber, B.
    Simmons, M. Y.
    [J]. NANO LETTERS, 2009, 9 (02) : 707 - 710
  • [10] Charge-based quantum computing using single donors in semiconductors
    Hollenberg, LCL
    Dzurak, AS
    Wellard, C
    Hamilton, AR
    Reilly, DJ
    Milburn, GJ
    Clark, RG
    [J]. PHYSICAL REVIEW B, 2004, 69 (11):