A new generalization of fuzzy BCK/BCI-algebras

被引:0
作者
A. Borumand Saeid
D. R. Prince Williams
M. Kuchaki Rafsanjani
机构
[1] Shahid Bahonar University of Kerman,Department of Mathematics
[2] College of Applied Sciences,Department of Information Technology
[3] Shahid Bahonar University of Kerman,Department of Computer Science
来源
Neural Computing and Applications | 2012年 / 21卷
关键词
Besides to; Non-quasi coincident with; (α β); -fuzzy subalgebra;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, generalization of the fuzzy BCK/BCI-algebras of type (α, β)* are introduced. Then we state and prove some theorems that determine the relationship between these notions and subalgebras of BCK/BCI-algebras. Characterizations of (α, β)*-fuzzy subalgebras in a BCK/BCI-algebras are given.
引用
收藏
页码:813 / 819
页数:6
相关论文
共 18 条
[1]  
Ameri R(2011)Filteristic soft J Math Comput Sci 2 81-87
[2]  
Hedayati H(1996)-algebras Fuzzy Sets Syst 80 359-368
[3]  
Ghasemian E(2008) ∨ q)-fuzzy subgroup Iran J Fuzzy Syst 5 63-70
[4]  
Bhakat SK(2009)Redefined fuzzy subalgebras of Iran J Math Sci Inform 4 9-24
[5]  
Das P(2009)/ Opuscula Math 29 177-186
[6]  
Borumand Saeid A(2010)-algebras Neural Comput Appl 19 775-783
[7]  
Jun YB(2010)Redefined fuzzy subalgebra (with thresholds) of Int J Appl Math Stat 18 24-35
[8]  
Borumand Saeid A(2011)/ IAENG Int J Appl Math 41 17-22
[9]  
Borumand Saeid A(1980)-algebras J Math Anal Appl 76 571-599
[10]  
Borumand Saeid A(1965)Vague Inform Control 8 338-353