On the nonlinear stability of an epidemic SEIR reaction-diffusion model

被引:23
作者
Capone F. [1 ]
de Cataldis V. [1 ]
de Luca R. [1 ]
机构
[1] Department of Mathematics and Applications R. Caccioppoli, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinzia
关键词
Absorbing sets; Epidemic models; Lyapunov direct method; Reaction-diffusion systems; Stability;
D O I
10.1007/s11587-013-0151-y
中图分类号
学科分类号
摘要
This paper deals with a reaction-diffusion SEIR model for infections. The longtime behaviour of the solutions is analyzed and, in particular, absorbing sets in the phase space are determined. By using a peculiar Lyapunov function, the nonlinear asymptotic stability of endemic equilibrium is investigated. © 2013 Università degli Studi di Napoli "Federico II".
引用
收藏
页码:161 / 181
页数:20
相关论文
共 30 条
[1]  
Kermack, W., McKendrick, A., Contributions to the mathematical theory of epidemics (Part I) (1927) Proc. Roy. Soc. A, 115, pp. 700-721
[2]  
Shi, R., Jiang, X., Chen, L., The effect of impulsive vaccination on an SIR epidemic model (2009) Appl. Math. Comput., 212 (2), pp. 305-311
[3]  
Wang, J., Zhang, J., Jin, Z., Analysis of an SIR model with bilinear incidence rate (2010) Nonlinear Anal. Real World Appl., 11 (4), pp. 2390-2402
[4]  
Rionero, S., Buonomo, B., On the Lyapunov stability for SIRS epidemic models with general nonlinear incidence rate (2010) Appl. Math. Comput., 217, pp. 4010-4016
[5]  
Capasso, V., Mathematical structures of epidemic systems (1993) Lecture Notes in Biomathematics, 97. , Springer-Verlag, Berlin
[6]  
Capasso, V., Global solution for a diffusive nonlinear deterministic epidemic model (1978) SIAM J. Appl. Amal., 35, pp. 274-284
[7]  
Capasso, V., Grosso, E., Serio, G., I modelli matematici nella indagine epidemiologica. Applicazione all'epidemia di colera verificatasi in Bari nel 1973 (1977) Annali Sclavo, 19, pp. 193-208
[8]  
Jin, Y., Wang, W., Xiao, S., An SIRS model with a nonlinear incidence rate (2004) Math. Biosci. Eng., 1, pp. 361-404
[9]  
Korobeinikov, A., Lyapunov functions and global stability for SIR and SIRS epidemiological models with nonlinear transmission (2006) Bull. Math. Biol., 30, pp. 615-626
[10]  
Korobeinikov, A., Global properties of infectious disease models with nonlinear incidence (2007) Bull. Math. Biol., 69, pp. 1871-1886