Influence of post-annealing in N2 on structure and electrochemical characteristics of LiNi0.5Mn1.5O4

被引:0
|
作者
Shi-ci He
Qian Zhang
Wei-wei Liu
Guo-qing Fang
Yuichi Sato
Jun-wei Zheng
De-cheng Li
机构
[1] Soochow University,Institute of Chemical Power Sources
[2] Kanagawa University,Department of Applied Chemistry, Faculty of Engineering
来源
Chemical Research in Chinese Universities | 2013年 / 29卷
关键词
Li-ion battery; Cathode material; LiNi; Mn; O; Structural and electrochemical property;
D O I
暂无
中图分类号
学科分类号
摘要
LiNi0.5Mn1.5O4 prepared by a spray drying method was re-treated in N2 at 500, 600 and 700 °C, respectively. Their structural and electrochemical properties were studied by means of Fourier transform infrared(FTIR), X-ray diffraction(XRD), and charge-discharge tests. The space group of the LiNi0.5Mn1.5O4 transforms from P4332 to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Fd\bar 3m$$\end{document} at an annealing temperature of 700 °C. The electrochemical characteristics of the treated samples are closely related to the annealing temperature. The sample treated in N2 at 500 °C shows both an improved rate capability and cyclic performance at a high temperature compared with the as-prepared sample, while the sample treated in N2 at 700 °C shows dramatically decrease in its reversible capacity.
引用
收藏
页码:329 / 332
页数:3
相关论文
共 50 条
  • [1] Influence of Post-annealing in N2 on Structure and Electrochemical Characteristics of LiNi0.5Mn1.5O4
    He Shi-ci
    Zhang Qian
    Liu Wei-wei
    Fang Guo-qing
    Sato, Yuichi
    Zheng Jun-wei
    Li De-cheng
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2013, 29 (02) : 329 - 332
  • [2] Electrochemical characteristics of LiNi0.5Mn1.5O4 prepared by spray drying and post-annealing
    Li, Decheng
    Ito, Atsushi
    Kobayakawa, Koichi
    Noguchi, Hideyuki
    Sato, Yuichi
    ELECTROCHIMICA ACTA, 2007, 52 (05) : 1919 - 1924
  • [3] Influence of Co substitution for Ni and Mn on the structural and electrochemical characteristics of LiNi0.5Mn1.5O4
    Ito, Atsushi
    Li, Decheng
    Lee, Yunsung
    Kobayakawa, Koichi
    Sato, Yuichi
    JOURNAL OF POWER SOURCES, 2008, 185 (02) : 1429 - 1433
  • [4] Study on the electrochemical performance of LiNi0.5Mn1.5O4 with different precursor
    Yunjian Liu
    Long Chen
    Ionics, 2012, 18 : 649 - 653
  • [5] Effect of annealing treatment on electrochemical property of LiNi0.5Mn1.5O4 spinel
    Zhang Bao
    Wang Zhi-xing
    Guo Hua-jun
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2007, 17 (02) : 287 - 290
  • [6] Effect of annealing treatment on electrochemical property of LiNi0.5Mn1.5O4 spinel
    张宝
    王志兴
    郭华军
    Transactions of Nonferrous Metals Society of China, 2007, (02) : 287 - 290
  • [7] Preparation of LiNi0.5Mn1.5O4 cathode materials by electrospinning
    Shengkui Zhong
    Piao Hu
    Xia Luo
    Xiaoping Zhang
    Ling Wu
    Ionics, 2016, 22 : 2037 - 2044
  • [8] Influence of Co doping on crystal structure and electrochemical performances of LiNi0.5Mn1.5O4
    Wang, H.
    Li, J.
    Yang, S.
    Zhang, B.
    Xiao, J.
    Ren, R.
    Cui, J.
    Xiao, W.
    MATERIALS TECHNOLOGY, 2015, 30 (A2) : A75 - A78
  • [9] Comparison of structure and electrochemical properties for 5 V LiNi0.5Mn1.5O4 and LiNi0.4Cr0.2Mn1.4O4 cathode materials
    Ting-Feng Yi
    Chun-Yan Li
    Yan-Rong Zhu
    Jie Shu
    Rong-Sun Zhu
    Journal of Solid State Electrochemistry, 2009, 13
  • [10] Electrochemical intercalation kinetics of lithium ions for spinel LiNi0.5Mn1.5O4 cathode material
    Ting-Feng Yi
    Chun-Yan Li
    Yan-Rong Zhu
    Rong-Sun Zhu
    J. Shu
    Russian Journal of Electrochemistry, 2010, 46 : 227 - 232