Modeling alumina atomic layer deposition reaction kinetics during the trimethylaluminum exposure

被引:0
|
作者
Curtisha D. Travis
Raymond A. Adomaitis
机构
[1] University of Maryland,Department of Chemical and Biomolecular Engineering, Institute for Systems Research
来源
关键词
Atomic layer deposition; Alumina; Reaction kinetics modeling; Transition state theory; Statistical mechanics; Numerical simulation;
D O I
暂无
中图分类号
学科分类号
摘要
A model describing the reaction kinetics and surface species dynamics for trimethylaluminum (TMA) half-reactions of alumina atomic layer deposition (ALD) is presented. The model is based on reaction energetics data taken from published quantum chemical computational studies; these data are used to determine kinetic parameters using statistical thermodynamics and absolute reaction rate theory. Four TMA half-reactions were modeled to account for TMA adsorption and subsequent reaction on a range of growth surfaces spanning bare to fully hydroxylated states. By coupling the reaction rate models with surface species conservation equations, we create a dynamic model useful for examining the relative rates of completing surface reactions. Numerical simulations performed with the model reveal that it is a combination of TMA adsorption on hydroxylated and bare surface oxygen sites that produces Al adsorption rates comparable with those found for saturating ALD growth of alumina.
引用
收藏
相关论文
共 50 条
  • [41] Inductively coupled plasma nanoetching of atomic layer deposition alumina
    Han, Anpan
    Chang, Bingdong
    Todeschini, Matteo
    Hoa Thanh Le
    Tiddi, William
    Keil, Matthias
    MICROELECTRONIC ENGINEERING, 2018, 193 : 28 - 33
  • [42] Chiral templating of alumina nanofilms by the atomic layer deposition process
    Shalev, O. L.
    Carmiel, Y.
    Gottesman, R.
    Tirosh, S.
    Mastai, Y.
    CHEMICAL COMMUNICATIONS, 2016, 52 (81) : 12072 - 12075
  • [43] Thermal Atomic Layer Etching of Silica and Alumina Thin Films Using Trimethylaluminum with Hydrogen Fluoride or Fluoroform
    Rahman, Rezwanur
    Mattson, Eric C.
    Klesko, Joseph P.
    Dangerfield, Aaron
    Rivillon-Amy, Sandrine
    Smith, David C.
    Hausmann, Dennis
    Chabal, Yves J.
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (37) : 31784 - 31794
  • [44] Numerical modeling of atomic layer deposition supercycles
    Kunene, T. J.
    Coetzee, R. A. M.
    Tartibu, L.
    Jen, T. C.
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : S30 - S39
  • [45] Ozone-based atomic layer deposition of alumina from TMA: Growth, morphology, and reaction mechanism
    Elliott, S. D.
    Scarel, G.
    Wiemer, C.
    Fanciulli, M.
    Pavia, G.
    CHEMISTRY OF MATERIALS, 2006, 18 (16) : 3764 - 3773
  • [46] Multiscale modeling of atomic layer deposition processes
    Dwivedi, Vivek
    Adomaitis, Raymond A.
    2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 2495 - 2500
  • [47] Temperature dependence of the sticking coefficients of bis-diethyl aminosilane and trimethylaluminum in atomic layer deposition
    Schwille, Matthias C.
    Schoessler, Timo
    Schoen, Florian
    Oettel, Martin
    Bartha, Johann W.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2017, 35 (01):
  • [48] MODELING OF PRECURSOR FLOW AND DEPOSITION IN ATOMIC LAYER DEPOSITION REACTOR
    SIIMON, H
    AARIK, J
    JOURNAL DE PHYSIQUE IV, 1995, 5 (C5): : 245 - 252
  • [49] Atomic layer deposition of aluminum thin films using an alternating supply of trimethylaluminum and a hydrogen plasma
    Lee, YJ
    Kang, SW
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (10) : C91 - C93
  • [50] Spontaneous formation of aluminum germanate on Ge(100) by atomic layer deposition with trimethylaluminum and microwave-generated atomic oxygen
    Fukuda, Yukio
    Ishizaki, Hiroki
    Otani, Yohei
    Yamamoto, Chiaya
    Yamanaka, Junji
    Sato, Tetsuya
    Takamatsu, Toshiyuki
    Okamoto, Hiroshi
    Narita, Hidehumi
    APPLIED PHYSICS LETTERS, 2013, 102 (13)