Conditional Symmetry of a System of Nonlinear Reaction-Diffusion Equations

被引:0
作者
T. A. Barannyk
机构
[1] Korolenko Poltava National Pedagogic University,
来源
Ukrainian Mathematical Journal | 2016年 / 67卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The conditional symmetry of a system of nonlinear reaction-diffusion equations is investigated. It is shown that the operators of conditional symmetry exist for the systems of nonlinear reaction-diffusion equations with an arbitrary number of independent variables. Moreover, these operators are found in the explicit form.
引用
收藏
页码:1621 / 1628
页数:7
相关论文
共 11 条
[1]  
Cherniha R(2000)Lie symmetries of nonlinear multidimensional reaction-diffusion systems: I J. Phys. A: Math. Gen. 33 267-282
[2]  
King IR(2000)Lie symmetries of nonlinear multidimensional reaction-diffusion systems: I. Addendum J. Phys. A: Math. Gen. 33 7839-7841
[3]  
Cherniha R(2002)Lie symmetries of nonlinear multidimensional reaction-diffusion systems: II J. Phys. A: Math. Gen. 36 405-425
[4]  
King IR(2006)Group classification of systems of non-linear reaction-diffusion equations with general diffusion matrix. I. Generalized Ginsburg–Landau equations J. Math. Anal. Appl. 324 615-628
[5]  
Cherniha R(2007)Group classification of systems of non-linear reaction-diffusion equations with general diffusion matrix. II. Generalized Turing systems J. Math. Anal. Appl. 332 666-690
[6]  
King IR(2007)Group classification of systems of non-linear reaction-diffusion equations with triangular diffusion matrix Ukr. Math. J. 59 395-441
[7]  
Nikitin AG(1993)Symmetry reductions and exact solutions of a class of nonlinear heat equations Physica D 70 250-288
[8]  
Nikitin AG(undefined)undefined undefined undefined undefined-undefined
[9]  
Nikitin AG(undefined)undefined undefined undefined undefined-undefined
[10]  
Clarkson P(undefined)undefined undefined undefined undefined-undefined