Existence results for a doubly nonlocal equation

被引:23
作者
d’Avenia P. [1 ]
Siciliano G. [2 ]
Squassina M. [3 ]
机构
[1] Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Orabona 4, Bari
[2] Departamento de Matemática, Universidade de São Paulo, Rua do Matão, 1010, São Paulo, 05508-090, SP
[3] Dipartimento di Informatica, Università degli Studi di Verona, Cá Vignal 2, Strada Le Grazie 15, Verona
基金
巴西圣保罗研究基金会;
关键词
Choquard equation; Existence; Fractional Laplacian; Multiplicity; Nonexistence;
D O I
10.1007/s40863-015-0023-3
中图分类号
学科分类号
摘要
In this note we expose some results proved in d’Avenia et al. [8] concerning an elliptic problem in RN which involves two nonlocal operators: the fractional Laplacian and a convolution term of Hartree type. This equation has been called fractional Choquard equation. The results obtained concern regularity of weak solutions, existence and properties of ground states, as well as multiplicity and nonexistence of solutions. © 2015, Instituto de Matemática e Estatística da Universidade de São Paulo.
引用
收藏
页码:311 / 324
页数:13
相关论文
共 23 条
[1]  
Baernstein A., A Unified Approach to Symmetrization, Partial Differential Equations of Elliptic Type (Cortona, 1992). In: Symposium on Mathematics, XXXV, (1994)
[2]  
Berestycki H., Lions P.L., Nonlinear scalar fields equations, II. Existence of infinitely many solutions, Arch. Ration. Mech. Anal., 82, pp. 347-375, (1983)
[3]  
Bartsch T., Willem M., Infinitely many non-radial solutions of an Euclidean scalar field equation, J. Funct. Anal., 117, pp. 447-460, (1993)
[4]  
Bongers A., Existenzaussagen fur die Choquard–Gleichung: ein nichtlineares eigenwertproblem der plasma-physik, Z. Angew. Math. Mech., 60, pp. 240-242, (1980)
[5]  
Caffarelli L.A., Silvestre L., An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32, pp. 1245-1260, (2007)
[6]  
Chang X., Wang Z.-Q., Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity, Nonlinearity, 26, pp. 479-494, (2013)
[7]  
Chen W., Li C., Ou B., Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59, pp. 330-343, (2006)
[8]  
D'Avenia P., Siciliano G., Squassina M., On fractional Choquard equations, Math. Models Appl. Sci., 25, pp. 1447-1476, (2015)
[9]  
Felmer P., Quaas A., Tan J., Positive solutions of the nonlinear Schrd̈inger equation with the fractional Laplacian, Proc. R. Soc. Edinb. Sect. A, 142, pp. 1237-1262, (2012)
[10]  
Frank R., Lenzmann E., On Ground States for the L 2 -Critical Boson Star Equation