Quasi-elliptic and weakly coercive systems in Sobolev spaces of vector functions

被引:0
作者
D. V. Limanskii
M. M. Malamud
机构
[1] Donetsk National University,Department of Mathematics
[2] National Academy of Sciences of Ukraine,Institute of Applied Mathematics and Mechanics
来源
Russian Journal of Mathematical Physics | 2008年 / 15卷
关键词
Mathematical Physic; Vector Function; Elliptic Operator; Elliptic System; Polynomial Matrix;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this paper is to investigate a connection between l-quasi-ellipticity and weak coercivity of systems acting on the spaces of vector functions Π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ W_p^{l^{(k)} } $$\end{document} (ℝn). Moreover, we extend some of our earlier results to the matrix case. We also show that an l-quasielliptic system in the sense of O. V. Besov is q-quasi-elliptic in the sense of L. R. Volevich.
引用
收藏
页码:246 / 266
页数:20
相关论文
共 33 条
[1]  
Agranovich M. S.(1961)On Partial Differential Equations with Constant Coefficients Uspekhi Mat. Nauk 16 27-93
[2]  
Belinsky E. S.(2005)Multipliers in Russ. J. Math. Phys. 12 6-16
[3]  
Dvejrin M. Z.(1967) and Estimates for Systems of Differential Operators Mat. Sb. 73 585-599
[4]  
Malamud M. M.(1986)Coerciveness in a Nonisotropic S. L. Sobolev Space Tr. Mat. Inst. Steklova 173 3-13
[5]  
Besov O. V.(1972)Hörmander’s Theorem of Fourier Multipliers Illinois J. Math. 16 203-216
[6]  
Besov O. V.(2001)Supremum Norm Estimates for Partial Derivatives of Functions of Several Real Variables JIPAM. J. Inequal. Pure Appl. Math. 2 1-4
[7]  
Boman J.(1955)A Priori Estimate for a System of Differential Operators Comm. Pure Appl. Math. 8 503-538
[8]  
Bouzar C.(1955)Interior Estimates for Elliptic Systems of Partial Differential Equations Acta Math. 94 161-248
[9]  
Douglis A.(1964)On the Theory of General Partial Differential Operators Illinois J. Math. 8 112-124
[10]  
Nirenberg L.(2004)A Priori Estimates For Differential Operators in Dokl. Akad. Nauk 397 453-458