The ion bombardment-assisted transfer of the components of a solution to the plasma zone in an atmospheric-pressure glow discharge with a liquid cathode plays an important role. The dynamics of the impact of a 50–500 eV ion on the surface of liquid water was studied by molecular dynamics simulation. Data on the amount of water molecules transferred by ion impact to the gas phase are presented. It was shown that the sputtering yield of water can reach 450 molecules per ion at an energy consumption of 0.75 eV for sputtering. Structural changes occurring in the liquid phase under ion bombardment were analyzed on the basis of the dynamics of degradation of hydrogen bonds.