Uniqueness in One Inverse Problem for the Elasticity System

被引:0
作者
A. L. Bukhgeim
G. V. Dyatlov
V. B. Kardakov
E. V. Tantserev
机构
[1] Sobolev Institute of Mathematics,
[2] Novosibirsk State University of Architecture and Building,undefined
来源
Siberian Mathematical Journal | 2004年 / 45卷
关键词
inverse problem; elasticity system; memory; Riesz potential; integral equation of the first kind; low frequency data;
D O I
暂无
中图分类号
学科分类号
摘要
We consider an inverse problem for the stationary elasticity system with constant Lame coefficients and a variable matrix coefficient depending on the spatial variables and frequency. The right-hand side contains a delta-function whose support (source) varies in some domain disjoint from the support of the variable coefficient. The inverse problem is to find the coefficient from the scattered wave measured at the same point at which the perturbation originates. A uniqueness theorem is proven. The proof bases on reduction of the inverse problem to a family of equations with the M. Riesz potential.
引用
收藏
页码:618 / 627
页数:9
相关论文
共 5 条
[1]  
Riesz M.(1938)Integrales de Riemann-Liouville et potentiels Acta Szeged 9 1-42
[2]  
Lavrent′ev M. M.(1964)On an inverse problem for the wave equation Dokl. Akad. Nauk SSSR 157 520-521
[3]  
Lavrent′ev M. M.(1965)On one class of inverse problems for differential equations Dokl. Akad. Nauk SSSR 160 32-35
[4]  
A. L B. m.(1996)Uniqueness in one inverse problem of memory reconstruction Sibirsk. Mat. Zh. 37 526-533
[5]  
G. V D.(undefined)undefined undefined undefined undefined-undefined