A bayesian approach to bandwidth selection in univariate associate kernel estimation

被引:10
作者
Zougab N. [1 ]
Adjabi S. [1 ]
Kokonendji C.C. [2 ]
机构
[1] LAMOS Laboratory, University of Bejaia, Targa Ouzemour
[2] University of Franche-Comté, LMB UMR 6623 CNRS, Besançon cedex
关键词
Cross validation; likelihood; MCMC method;
D O I
10.1080/15598608.2013.756286
中图分类号
学科分类号
摘要
The fundamental problem in the associate kernel estimation of density or probability mass function (pmf) is the choice of the bandwidth. In this paper, we use a Bayesian approach based upon likelihood cross-validation and a Monte Carlo Markov chain (MCMC) method for deriving the global optimal bandwidth. A comparative simulation study of the MCMC method and the classical methods that adopt the asymptotic mean integrated square error () as criterion and the cross validation is presented for data generated from known densities and pmf, using standard AMISE and the practical integrated squared error. The simulation results show the superiority of the MCMC method over the classical methods. © 2013 Copyright Grace Scientific Publishing, LLC.
引用
收藏
页码:8 / 23
页数:15
相关论文
共 21 条
[1]  
Bauwens L., Lubrano M., Bayesian inference on GARCH models using the Gibbs sampler, Econometrics J., 1, (1998)
[2]  
Bowman A.W., An alternative method of cross-validation for the smoothing of density estimates, Biometrika, 71, pp. 353-360, (1984)
[3]  
Brewer M.J., A Bayesian model for local smoothing in kernel density estimation, Statistics and Computing, 10, pp. 299-309, (2000)
[4]  
Gelman A., Carlin J.B., Stern H.S., Rubin D.B., Bayesian Data Analysis, (1995)
[5]  
Gelman A., Roberts G.O., Gilks W.R., Efficient metropolis jumping rules, Bayesian Statistics, 5, pp. 599-608, (1996)
[6]  
Gelman A., Rubin D.B., Inference from iterative simulation using multiple sequences, Statistical Science, 7, pp. 457-511, (1992)
[7]  
Hall P., Marron J.S., Park B.U., Smoothed cross validation, Probability Theory and Related Fields, 92, pp. 1-20, (1992)
[8]  
Kokonendji C.C., Senga Kiesse T., Discrete associated kernels method and extensions, Statistical Methodology, 8, pp. 497-516, (2011)
[9]  
Kokonendji C.C., Senga Kiesse T., Balakrishnan N., Semiparametric estimation for count data through weighted distributions, J. Stat. Plan. Inf., 139, pp. 3625-3638, (2009)
[10]  
Kokonendji C.C., Senga Kiesse T., Zocchi S.S., Discrete triangular distributions and non-parametric estimation for probability mass function, J. Nonparametric Stat., 19, pp. 241-257, (2007)