On the joint distribution of success runs of several lengths in the sequence of MBT and its applications

被引:0
作者
Kirtee K. Kamalja
机构
[1] North Maharashtra University,Department of Statistics, School of Mathematical Sciences
来源
Statistical Papers | 2014年 / 55卷
关键词
Runs; Method of conditional pgfs; Matrix polynomial; Algorithm; 46N30; 65C50; 65C60;
D O I
暂无
中图分类号
学科分类号
摘要
Let X1,X2,…,Xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_1 ,X_2 ,\ldots ,X_n $$\end{document} be a sequence of Markov Bernoulli trials (MBT) and X̲n=(Xn,k1,Xn,k2,…,Xn,kr)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\underline{X}_n =( {X_{n,k_1 } ,X_{n,k_2 } ,\ldots ,X_{n,k_r } })$$\end{document} be a random vector where Xn,ki\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_{n,k_i } $$\end{document} represents the number of occurrences of success runs of length ki(i=1,2,…,r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_i \,( {i=1,2,\ldots ,r})$$\end{document}. In this paper the joint distribution of X̲n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\underline{X}_n $$\end{document} in the sequence of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} MBT is studied using method of conditional probability generating functions. Five different counting schemes of runs namely non-overlapping runs, runs of length at least k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}, overlapping runs, runs of exact length k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} and ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-overlapping runs (i.e. ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-overlapping counting scheme), 0≤ℓ<k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \ell <k$$\end{document} are considered. The pgf of joint distribution of X̲n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\underline{X}_n $$\end{document} is obtained in terms of matrix polynomial and an algorithm is developed to get exact probability distribution. Numerical results are included to demonstrate the computational flexibility of the developed results. Various applications of the joint distribution of X̲n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\underline{X}_n $$\end{document} such as in evaluation of the reliability of (n,f,k):G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( {n,f,k})\!\!:\!\!G$$\end{document} and <n,f,k>:G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<n,f,k>\!:\!\!G$$\end{document} system, in evaluation of quantities related to start-up demonstration tests, acceptance sampling plans are also discussed.
引用
收藏
页码:1179 / 1206
页数:27
相关论文
共 53 条
  • [1] Aki S(2000)Number of success runs of specified length until certain stopping time rules and generalized binomial distributions of order Ann Inst Stat Math 52 767-777
  • [2] Hirano K(2000)Start-up demonstration tests with rejection of units upon observing Ann Inst Stat Math 52 184-196
  • [3] Balakrishnan N(1993)failures Math Sci 18 113-126
  • [4] Chan PS(1993)On sampling inspection plans based on the theory of runs Stat Probab Lett 18 153-161
  • [5] Balakrishnan N(1999)Sooner and later waiting time problems for Markovian Bernoulli trials Stat Probab Lett 43 237-242
  • [6] Balasubramanian K(2006)Reliabilities for (n, f, k) systems Stat Probab Lett 76 1081-1088
  • [7] Viveros R(1997)On the dual reliability systems of ( Ann Inst Stat Math 49 141-153
  • [8] Balasubramanian K(2006)) and Commun Stat Theory Methods 35 1779-1789
  • [9] Viveros R(1998)Formulae and recursions for the joint distribution of success runs of several lengths Stat Probab Lett 40 203-214
  • [10] Balakrishnan N(1999)Relibilities for ( Ann Inst Stat Math 51 419-447