Zeta elements in the K-theory of Drinfeld modular varieties

被引:0
作者
Satoshi Kondo
Seidai Yasuda
机构
[1] University of Tokyo,Institute for the Physics and Mathematics of the Universe
[2] Kyoto University,Research Institute for Mathematical Sciences
来源
Mathematische Annalen | 2012年 / 354卷
关键词
Primary 11G09; Secondary 11F52; 11F67;
D O I
暂无
中图分类号
学科分类号
摘要
Beilinson (Contemp Math 55:1–34, 1986) constructs special elements in the second K-group of an elliptic modular curve, and shows that the image under the regulator map is related to the special values of the L-functions of elliptic modular forms. In this paper, we give an analogue of this result in the context of Drinfeld modular varieties.
引用
收藏
页码:529 / 587
页数:58
相关论文
共 23 条
[1]  
Borel A.(1976)Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup Invent. Math. 35 233-259
[2]  
Bruhat F.(1972)Groupes reductifs sur un corps local Publ. Math., Inst. Hautes Étud. Sci. 41 5-251
[3]  
Tits J.(1978)On p-adic L-functions and elliptic units J. Aust. Math. Soc. Ser. A 26 1-25
[4]  
Coates J.(1973)p-adic curvature and the cohomology of discrete subgroups of p-adic groups Ann. Math. 97 375-423
[5]  
Wiles A.(1981)Riemann-Roch theorems for higher algebraic K-theory Adv. Math. 40 203-289
[6]  
Garland H.(1988)Fourier series and the special values of L-functions Adv. Math. 69 1-31
[7]  
Gillet H.(1965)Éléments de géométrie algébrique IV: Étude locale des schemas et des morphismes de schemas. (Seconde partie.). (French) Publ. Math., Inst. Hautes Étud. Sci. 24 1-231
[8]  
Gross B.(1974)Chevalley groups over function fields and automorphic forms Ann. Math. 100 249-306
[9]  
Rosen M.(1981)Conducteur des représentations du groupe linéaire Math. Ann. 256 199-214
[10]  
Grothendieck A.(1981)On Euler products and the classification of automorphic representations. I Am. J. Math. 103 499-558