Square-full numbers in Piatetski–Shapiro sequences

被引:0
作者
Teerapat Srichan
Pinthira Tangsupphathawat
机构
[1] Kasetsart University,Department of Mathematics, Faculty of Science
[2] Phranakhon Rajabhat University,Department of Mathematics, Faculty of Science and Technology
来源
Annales mathématiques du Québec | 2020年 / 44卷
关键词
Piatetski-Shapiro sequences; Square-full numbers; 11N37;
D O I
暂无
中图分类号
学科分类号
摘要
A positive integer n is called square-full if for every prime p|n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\vert n$$\end{document}, also p2|n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^2\vert n$$\end{document}. Piatetski–Shapiro sequences (PS-sequences) are defined by Nc=(⌊nc⌋)n∈N,(c>1,c∉N),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathbb {N}}^c=(\lfloor n^c \rfloor )_{n\in {\mathbb {N}}}, \quad (c>1, c\notin {\mathbb {N}}), \end{aligned}$$\end{document}where ⌊z⌋\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lfloor z\rfloor $$\end{document} is the integer part of a real z. In this paper we investigate the distribution of square-full numbers in Piatetski–Shapiro sequences.
引用
收藏
页码:385 / 391
页数:6
相关论文
共 30 条
  • [1] Akbal Y(2016)Waring’s problem with Piatetski–Shapiro numbers Mathematika 62 524-550
  • [2] Güloǧlu AM(2014)The intersection with Piatetski–Shapiro sequences Mathematika 60 347-362
  • [3] Baker RC(2015)Character sums with Piatetski–Shapiro sequences Quart J. Math. 66 393-416
  • [4] Baker RC(2013)Piatetski–Shapiro sequences Acta Arith. 157 37-68
  • [5] Banks WD(2014)Piatetski–Shapiro primes from almost primes Monatsh Math. 174 357-370
  • [6] Baker RC(2016)Almost primes of the form Indag. Math. 27 423-436
  • [7] Banks WD(1998)The distribution of square-free numbers of the form J. Théor. Nombres Bordeaux 10 287-299
  • [8] Brüdern J(2019)A remark on cube-free numbers in Segal–Piatestki–Shapiro sequences Hardy Ramanujan J. 41 127-132
  • [9] Shparlinski IE(2017)Squares in Piatetski–Shapiro sequences Acta Arith. 181 239-252
  • [10] Weingartner A(1953)On the distribution of prime numbers in sequences of the form Mat Sb. 33 559-566