Inductive Time-Space Lower Bounds for Sat and Related Problems

被引:0
作者
Ryan Williams
机构
[1] Carnegie Mellon University,Computer Science Department
来源
computational complexity | 2006年 / 15卷
关键词
Time-space tradeoffs; lower bounds; polynomial-time hierarchy; satisfiability; diagonalization; bounded nondeterminism; 68Q17;
D O I
暂无
中图分类号
学科分类号
摘要
We improve upon indirect diagonalization arguments for lower bounds on explicit problems within the polynomial hierarchy. Our contributions are summarized as follows. We present a technique that uniformly improves upon most known nonlinear time lower bounds for nondeterminism and alternating computation, on both subpolynomial (no(1)) space RAMs and sequential one-tape machines with random access to the input. We obtain improved lower bounds for Boolean satisfiability (SAT), as well as all NP-complete problems that have efficient reductions from SAT, and ∑k-SAT, for constant k ≥ 2. For example, SAT cannot be solved by random access machines using \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$n^{\sqrt{3}}$$ \end{document} time and subpolynomial space.We show how indirect diagonalization leads to time-space lower bounds for computation with bounded nondeterminism. For both the random access and multitape Turing machine models, we prove that for all k ≥ 1, there is a constant ck > 1 such that linear time with n1/k nondeterministic bits is not contained in deterministic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$n^{{c}_{k}}$$ \end{document} time with subpolynomial space. This is used to prove that satisfiability of Boolean circuits with n inputs and nk size cannot be solved by deterministic multitape Turing machines running in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${n^{{k \cdot {c}}_{k}}}$$ \end{document} time and subpolynomial space.
引用
收藏
页码:433 / 470
页数:37
相关论文
empty
未找到相关数据