Fast multipole methods for approximating a function from sampling values

被引:0
作者
Guidong Liu
Shuhuang Xiang
机构
[1] Central South University,School of Mathematics and Statistics
来源
Numerical Algorithms | 2017年 / 76卷
关键词
Barycentric interpolation; Arithmetic operations; Fast multipole method; 65D05; 65D15; 31C20;
D O I
暂无
中图分类号
学科分类号
摘要
Both barycentric Lagrange interpolation and barycentric rational interpolation are thought to be stable and effective methods for approximating a given function on some special point sets. A direct evaluation of these interpolants due to N interpolation points at M sampling points requires O(NM)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(NM)$\end{document} arithmetic operations. In this paper, we introduce two fast multipole methods to reduce the complexity to O(maxN,M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(\max \left \{N,M\right \})$\end{document}. The convergence analysis is also presented in this paper.
引用
收藏
页码:727 / 743
页数:16
相关论文
共 56 条
  • [1] Baker RD(2014)Statistical application of barycentric rational interpolants: an alternative to splines Comput. Stat. 29 1065-1081
  • [2] Jackson D(1999)Exponential convergence of a linear rational interpolant between transformed Chebyshev points Math. Comp. 12 1109-1120
  • [3] Baltensperger R(1912)Sur l’ordre de la meilleure approximation des fonctions continues par les polynômes de degré donné Mém. Acad. Roy Belg. 4 1-103
  • [4] Berrut JP(1988)Rational functions for guaranteed and experimentally well-conditioned global interpolation Comput. Math. Appl. 15 1-16
  • [5] Noël B(2011)Convergence rates of derivatives of a family of barycentric rational interpolants Appl. Numer. Math. 61 989-1000
  • [6] Bernstein SN(2004)Barycentric Lagrange interpolation SIAM Rev. 46 501-517
  • [7] Berrut JP(2002)Computing zeros on a real interval through Chebyshev expansion and polynomial rootfinding SIAM J. Numer. Anal. 40 1666-1682
  • [8] Berrut JP(2013)Finding the zeros of a univariate equation: proxy rootfinders, Chebyshev interpolation, and the companion matrix SIAM Rev. 55 375-396
  • [9] Floater MS(1988)A fast adaptive multipole algorithm for particle simulations SIAM J. Sci. Stat. Comput. 9 669-686
  • [10] Klein G(1996)Fast algorithms for polynomial interpolation, integration, and differentiation SIAM J. Numer. Anal. 33 1689-1711