Stability of a functional equation for generalized polynomials

被引:0
作者
Wolfgang Prager
Jens Schwaiger
机构
[1] Karl-Franzens Universität,Institut für Mathematik und Wissenschaftliches Rechnen
来源
Aequationes mathematicae | 2016年 / 90卷
关键词
39B22; 11C08; 39B82; Generalized polynomials; stability;
D O I
暂无
中图分类号
学科分类号
摘要
All solutions of the equation f(x)+∑i=1naif(x+ρiy)+∑j=1lbjf(σjy)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f(x)+\sum_{i=1}^na_if(x+\rho_iy)+\sum_{j=1}^lb_jf(\sigma_jy)=0}$$\end{document} are generalized polynomials of degree at most n. The general solution heavily depends on the parameters ai,ρi,bj,σj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a_i, \rho_i, b_j, \sigma_j}$$\end{document}. Here the stability of this equation is investigated, i. e., for given suitable φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi}$$\end{document} the inequality ‖f(x)+∑i=1naif(x+ρiy)+∑j=1lbjf(σjy)‖≤φ(x,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Vert f(x)+\sum_{i=1}^na_if(x+\rho_iy)+\sum_{j=1}^lb_jf(\sigma_jy)\Vert\le\varphi(x,y)}$$\end{document} is considered. The method does not seem to standard: At first it is shown that f is “close” to some generalized polynomial P of degree at most n; and then it is shown that P is a solution of the equation above. In this context it is not necessary to know all solutions of the equation. Even more, there is no need to decide whether the equation has non-trivial solutions or not.
引用
收藏
页码:67 / 75
页数:8
相关论文
共 5 条
[1]  
Baker J.A.(2005)A general functional equation and its stability Proc. Am. Math. Soc. 133 1657-1664
[2]  
Dăianu D.M.(2014)Recursive procedure in the stability of Fréchet polynomials Adv. Differ. Equ. 2014 16-198
[3]  
Ðokovic D.Ž.(1969)A representation theorem for Ann. Pol. Math. 22 189-162
[4]  
Kiss G.(2014) and its applications Aequat. Math. 88 151-undefined
[5]  
Varga A.(undefined)Existence of nontrivial solutions of linear functional equations undefined undefined undefined-undefined