Compactness of binomial difference operator of fractional order and sequence spaces

被引:0
作者
Taja Yaying
Anupam Das
Bipan Hazarika
P. Baliarsingh
机构
[1] Dera Natung Government College,Department of Mathematics
[2] Rajiv Gandhi University,Department of Mathematics
[3] Gauhati University,Department of Mathematics
[4] KIIT,Department of Mathematics, School of Applied Sciences
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2019年 / 68卷
关键词
Binomial difference sequence space; Difference operator ; Schauder basis;  ,  ;  ,  ; duals; Compact operator; Hausdorff measure of non-compactness; Primary 46A45; Secondary 46A35; 46B45;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we introduce binomial difference sequence spaces of fractional order α,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ,$$\end{document}b0r,sΔ(α),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_0^{r,s}\left( \Delta ^{(\alpha )}\right) ,$$\end{document}bcr,sΔ(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_c^{r,s}\left( \Delta ^{(\alpha )}\right) $$\end{document} and b∞r,sΔ(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_{\infty }^{r,s}\left( \Delta ^{(\alpha )}\right) $$\end{document} by employing fractional difference operator Δ(α),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta ^{(\alpha )},$$\end{document} defined by Δ(α)xk=∑i=0∞(-1)iΓ(α+1)i!Γ(α-i+1)xk-i.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta ^{(\alpha )}x_k=\sum \limits _{i=0}^{\infty }(-1)^i\frac{\Gamma (\alpha +1)}{i!\Gamma (\alpha -i+1)}x_{k-i}.$$\end{document} We give some topological properties, obtain the Schauder basis and determine the α-,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha -,$$\end{document}β-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta -$$\end{document} and γ-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma -$$\end{document} duals of the spaces. We characterize the matrix classes (bcr,s(Δ(α)),ℓp),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(b_c^{r,s}(\Delta ^{(\alpha )}),\ell _p),$$\end{document}(bcr,s(Δ(α)),ℓ∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(b_c^{r,s}(\Delta ^{(\alpha )}),\ell _{\infty })$$\end{document} and (bcr,s(Δ(α)),c).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(b_c^{r,s}(\Delta ^{(\alpha )}),c).$$\end{document} We characterize certain classes of compact operators on the space bcr,s(Δ(α))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_c^{r,s}(\Delta ^{(\alpha )})$$\end{document} using Hausdorff measure of non-compactness. Finally, we present the graphical interpretation of the operator Br,sΔ(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^{r,s}\left( \Delta ^{(\alpha )}\right) $$\end{document}.
引用
收藏
页码:459 / 476
页数:17
相关论文
共 56 条
[1]  
Altay B(2006)On some new Euler difference sequence spaces Southeast Asian Bull. Math. 30 209-220
[2]  
Polat H(2005)On some Euler sequence spaces of nonabsolute type Ukr. Math. J. 57 1-17
[3]  
Altay B(2006)On the Euler sequence spaces which include the spaces Inf. Sci. 176 1450-1462
[4]  
Başar F(2015) and Bol. Soc. Paran. Mat. 33 49-57
[5]  
Altay B(2015) I Appl. Math. Comput. 250 665-674
[6]  
Başar F(2013)A unifying approach to the difference operators and their applications Appl. Math. Comput. 219 9737-9742
[7]  
Mursaleen M(2015)On the classes of fractional order difference sequence spaces and their matrix transformations J. Egypt. Math. Soc. 23 297-302
[8]  
Baliarsingh P(2004)Some new difference sequence spaces of fractional order and their dual spaces J. Math. Anal. Appl. 292 423-432
[9]  
Dutta S(2016)On an explicit formula for inverse of triangular matrices J. Inequal. Appl. 309 16-1306
[10]  
Baliarsingh P(2016)Generalized difference sequence spaces and their dual spaces J. Inequal. Appl. 304 15-666