Truncated Quillen complexes of p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-groups

被引:0
作者
Francesco Fumagalli
John Shareshian
机构
[1] Dipartimento di Matematica “Ulisse Dini”,Department of Mathematics
[2] Washington University,undefined
关键词
Quillen complex; -group; Homology;
D O I
10.1007/s10801-014-0506-9
中图分类号
学科分类号
摘要
Let p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} be an odd prime and let P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P$$\end{document} be a p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-group. We examine the order complex of the poset of elementary abelian subgroups of P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P$$\end{document} having order at least p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^2$$\end{document}. Bouc and Thévenaz showed that this complex has the homotopy type of a wedge of spheres. We show that, for each nonnegative integer l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l$$\end{document}, the number of spheres of dimension l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l$$\end{document} in this wedge is controlled by the number of extraspecial subgroups X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document} of P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P$$\end{document} having order p2l+3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^{2l+3}$$\end{document} and satisfying Ω1(CP(X))=Z(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _1(C_P(X))=Z(X)$$\end{document}. We go on to provide a negative answer to a question raised by Bouc and Thévenaz concerning restrictions on the homology groups of the given complex.
引用
收藏
页码:771 / 784
页数:13
相关论文
共 10 条
[1]  
Bornand D(2011)Elementary abelian subgroups in J. Algebra 335 301-318
[2]  
Bouc S(2008)-groups with a cyclic derived subgroup Monogr. Enseign. Math. 40 41-45
[3]  
Thévenaz J(1974)The poset of elementary abelian subgroups of rank at least Invent. Math. 27 229-264
[4]  
Brown KS(1975)Euler characteristics of discrete groups and Invent. Math. 29 1-5
[5]  
Brown KS(1973)-spaces Pacific J. Math. 48 403-422
[6]  
Griess RL(1985)Euler characteristics of groups: the Comment. Math. Helv. 60 85-106
[7]  
Kratzer C(1978)-fractional part Adv. Math. 28 101-128
[8]  
Thévenaz J(1972)Automorphisms of extra special groups and nonvanishing degree 2 cohomology Rocky Mountain J. Math. 2 159-168
[9]  
Quillen D(undefined)Type d’homotopie des treillis et treillis des sous-groupes d’un groupe fini undefined undefined undefined-undefined
[10]  
Winter DL(undefined)Homotopy properties of the poset of nontrivial undefined undefined undefined-undefined