The unit ball of the complex \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal P}(^3H)}$$\end{document}

被引:0
作者
B. C. Grecu
G. A. Muñoz-Fernández
J. B. Seoane-Sepúlveda
机构
[1] Queen’s University Belfast,School of Mathematics and Physics
[2] Universidad Complutense de Madrid,Departamento de Análisis Matemático, Facultad de Ciencias Matemáticas
关键词
Hilbert Space; Extreme Point; Unit Ball; Unit Sphere; Convex Combination;
D O I
10.1007/s00209-008-0438-y
中图分类号
学科分类号
摘要
Let H be a two-dimensional complex Hilbert space and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal P}(^3H)}$$\end{document} the space of 3-homogeneous polynomials on H. We give a characterization of the extreme points of its unit ball, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathsf B}_{{\mathcal P}(^3H)}}$$\end{document} , from which we deduce that the unit sphere of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal P}(^3H)}$$\end{document} is the disjoint union of the sets of its extreme and smooth points. We also show that an extreme point of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathsf B}_{{\mathcal P}(^3H)}}$$\end{document} remains extreme as considered as an element of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathsf B}_{{\mathcal L}(^3H)}}$$\end{document} . Finally we make a few remarks about the geometry of the unit ball of the predual of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal P}(^3H)}$$\end{document} and give a characterization of its smooth points.
引用
收藏
页码:775 / 785
页数:10
相关论文
共 26 条
[1]  
Aron R.M.(2007)A multilinear Phelps’ Lemma Proc. Am. Math. Soc. 135 2549-2554
[2]  
Cardwell A.(2006)Zero sets of polynomials in several variables Arch. Math. (Basel) 86 561-568
[3]  
García D.(2001)Supremum norms for quadratic polynomials Arch. Math. (Basel) 76 73-80
[4]  
Zalduendo I.(1998)Extreme polynomials and multilinear forms on J. Math. Anal. Appl. 228 467-482
[5]  
Aron R.M.(2000)Extreme points of the complex binary trilinear ball Studia Math. 138 81-92
[6]  
Hájek P.(2006)Limit orders and multilinear forms on Publ. Res. Inst. Math. Sci. 42 507-522
[7]  
Aron R.M.(2003) spaces Math. Scand. 92 129-140
[8]  
Klimek M.(2002)Extreme integral polynomials on a complex Banach space Quaest. Math. 25 421-435
[9]  
Choi Y.S.(2000)Extreme 2-homogeneous polynomials on Hilbert spaces J. Math. Anal. Appl. 246 217-229
[10]  
Kim S.G.(1988)Geometry of three-homogeneous polynomials on real Hilbert spaces Arch. Math. (Basel) 50 264-269