Boundedness of Some Marcinkiewicz Integral Operators Related to Higher Order Commutators on Hardy Spaces

被引:0
作者
Shan Zhen Lu
Li Fang Xu
机构
[1] Beijing Normal University,Department of Mathematics
来源
Acta Mathematica Sinica | 2006年 / 22卷
关键词
Marcinkiewicz integral; Higher order commutator; Lipshcitz space; Hardy type space; Herz space; 42B20; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the authors study the boundedness properties of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mu ^{m}_{{\Omega ,b}} $$\end{document} generated by the function b ∈ Lipβ(ℝn)(0 < β ≤ 1/m) and the Marcinkiewicz integrals operator μΩ. The boundednesses are established on the Hardy type spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H^{p}_{{b^{m} ,s}} {\left( {\mathbb{R}^{n} } \right)} $$\end{document} and the Herz–Hardy type spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H_{{b^{m} }} \dot{K}^{{\alpha ,p}}_{q} {\left( {\mathbb{R}^{n} } \right)} $$\end{document}.
引用
收藏
页码:105 / 114
页数:9
相关论文
共 5 条
[1]  
Stein undefined(1958)undefined Trans. Amer. Math. Soc. 88 430-undefined
[2]  
Torchinsky undefined(1990)undefined Colloquium Math. 60/61 235-undefined
[3]  
Chanilio undefined(1982)undefined Indiana Univ. Math. Jour. 31 7-undefined
[4]  
Hu undefined(1997)undefined J. of Beijing Norm. Unic. 33 27-undefined
[5]  
Lu undefined(2002)undefined Sci. in China 45 984-undefined