Further discrepancy bounds and an Erdös–Turán–Koksma inequality for hybrid sequences

被引:0
作者
Harald Niederreiter
机构
[1] RICAM,Department of Mathematics
[2] Austrian Academy of Sciences,undefined
[3] University of Salzburg,undefined
来源
Monatshefte für Mathematik | 2010年 / 161卷
关键词
Discrepancy; Hybrid sequence; Halton sequence; Kronecker sequence; Nonlinear congruential sequence; Inversive sequence; Quasi-Monte Carlo method; Primary 11K38; 11K45; 11L07; Secondary 65C05; 65C10; 65D30;
D O I
暂无
中图分类号
学科分类号
摘要
We consider hybrid sequences, that is, sequences in a multidimensional unit cube that are composed from lower-dimensional sequences of two different types. We establish nontrivial deterministic discrepancy bounds for five kinds of hybrid sequences as well as a new version of the Erdös–Turán–Koksma inequality which is suitable for hybrid sequences.
引用
收藏
页码:193 / 222
页数:29
相关论文
共 31 条
[1]  
Baker A.(1965)On some diophantine inequalities involving the exponential function Can. J. Math. 17 616-626
[2]  
Cochrane T.(1988)Trigonometric approximation and uniform distribution modulo one Proc. Am. Math. Soc. 103 695-702
[3]  
Eichenauer J.(1988)Marsaglia’s lattice test and non-linear congruential pseudo random number generators Metrika 35 241-250
[4]  
Grothe H.(1993)Statistical independence of a new class of inversive congruential pseudorandom numbers Math. Comp. 60 375-384
[5]  
Lehn J.(1948)On a problem in the theory of uniform distribution, I, II Indag. Math. 10 370-378
[6]  
Eichenauer-Herrmann J.(2009)On probabilistic results for the discrepancy of a hybrid-Monte Carlo sequence J. Complexity 25 312-317
[7]  
Erdös P.(1960)On the efficiency of certain quasi-random sequences of points in evaluating multi- dimensional integrals Numer. Math. 2 84-90
[8]  
Turán P.(1994)General discrepancy estimates: the Walsh function system Acta Arith. 67 209-218
[9]  
Gnewuch M.(1995)General discrepancy estimates III: the Erdös–Turán–Koksma inequality for the Haar function system Monatsh. Math. 120 25-45
[10]  
Halton J.H.(2002)On the pseudo-random properties of Ill. J. Math. 46 185-197