Areas of triangles and Beck’s theorem in planes over finite fields

被引:0
作者
Alex Iosevich
Misha Rudnev
Yujia Zhai
机构
[1] University of Rochester,Department of Mathematics
[2] University of Bristol,Department of Mathematics
[3] University of Rochester,Department of Mathematics
来源
Combinatorica | 2015年 / 35卷
关键词
68R05; 11B75;
D O I
暂无
中图分类号
学科分类号
摘要
The first main result of this paper establishes that any sufficiently large subset of a plane over the finite field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F}_q$$\end{document}, namely any set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E \subseteq \mathbb{F}_q^2$$\end{document} of cardinality |E| > q, determines at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tfrac{{q - 1}} {2}$$\end{document} distinct areas of triangles. Moreover, one can find such triangles sharing a common base in E, and hence a common vertex. However, we stop short of being able to tell how “typical” an element of E such a vertex may be.
引用
收藏
页码:295 / 308
页数:13
相关论文
共 36 条
  • [1] Beck J.(1983)On the lattice property of the plane and some problems of Dirac, Motzkin, and Erdős in combinatorial geometry Combinatorica 3 281-297
  • [2] Bourgain J.(2004)A sum-product estimate infinite fields, and applications Geom. Funct. Anal. 14 27-57
  • [3] Katz N.(2010)Generalized incidence theorems, homogeneous forms and sum-product estimates infinite fields European J. of Combinatorics 31 306-319
  • [4] Tao T.(1946)On sets of distances of American Mathematical Monthly 53 248-250
  • [5] Covert D.(1982) points Discrete Mathematics 40 45-52
  • [6] Hart D.(2008)On a problem in combinatorial geometry Proc. Amer. Math. Soc. 136 2735-2739
  • [7] Iosevich A.(2009)The sum-product estimate for large subsets of prime fields J. Anal. Math. 108 159-170
  • [8] Koh D.(2008)On additive properties of product sets in an arbitrary finite field Contemp. Math. 464 129-135
  • [9] Rudnev M.(2011)Sums and products infinite fields: an integral geometric viewpoint, Radon transforms, geometry, and wavelets Amer. Math. Soc. 363 3255-3275
  • [10] Erdős P.(2011)Averages over hyperplanes, sum-product theory in vector spaces over finite fields and the Erdős-Falconer distance conjecture. Trans Mathematika 57 135-145