Bounding Zolotarev Numbers Using Faber Rational Functions

被引:0
作者
Daniel Rubin
Alex Townsend
Heather Wilber
机构
[1] Cornell University,Mathematics Department
[2] Cornell University,Center for Applied Mathematics
来源
Constructive Approximation | 2022年 / 56卷
关键词
Faber rational functions; Zolotarev; Conformal maps; Singular values; Rational approximation; 26C15; 30C20;
D O I
暂无
中图分类号
学科分类号
摘要
By closely following a construction by Ganelius, we use Faber rational functions to derive tight explicit bounds on Zolotarev numbers. We use our results to bound the singular values of matrices, including complex-valued Cauchy matrices and Vandermonde matrices with nodes inside the unit disk. We construct Faber rational functions using doubly connected conformal maps and use their zeros and poles to supply shift parameters in the alternating direction implicit method.
引用
收藏
页码:207 / 232
页数:25
相关论文
共 32 条
[1]  
Bagby T(1969)On interpolation by rational functions Duke Math. J. 36 95-104
[2]  
Bazán FSV(2000)Conditioning of rectangular Vandermonde matrices with nodes in the unit disk SIAM J. Mat. Anal. Appl. 21 679-693
[3]  
Beckermann B(2019)On the singular values of matrices with displacement structure SIAM Rev. 61 319-344
[4]  
Townsend A(2004)Barycentric Lagrange interpolation SIAM Rev. 46 501-517
[5]  
Berrut JP(2005)On approximation of functions by exponential sums Appl. Comput. Harm. Anal. 19 17-48
[6]  
Trefethen LN(1903)Über polynomische entwickelungen Math. Ann. 57 389-408
[7]  
Beylkin G(1975)A note on the zeros of Faber polynomials Proc. Am. Math. Soc. 49 2-2094
[8]  
Monzón L(2019)Solving Laplace problems with corner singularities via rational functions SIAM J. Number. Anal. 57 2074-A2122
[9]  
Faber G(2015)Zolotarev quadrature rules and load balancing for the FEAST eigensolver SIAM J. Sci. Comput. 37 A2100-333
[10]  
Goodman AW(1998)Algorithm 785: a software package for computing Schwarz–Christoffel conformal transformation for doubly connected polygonal regions ACM Trans. Math. Soft. 24 317-206