Star configurations are set-theoretic complete intersections

被引:0
作者
Ştefan O. Tohǎneanu
机构
[1] University of Idaho,Department of Mathematics
来源
Archiv der Mathematik | 2015年 / 105卷
关键词
Primary 14N20; Secondary 16N40; Star configuration; Set-theoretic complete intersection;
D O I
暂无
中图分类号
学科分类号
摘要
Let A⊂Pk-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A} \subset \mathbb P^{k-1}}$$\end{document} be a rank k arrangement of n hyperplanes, with the property that any k of the defining linear forms are linearly independent (i.e., A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}}$$\end{document} is called k-generic). We show that for any j=0,…,k-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${j=0,\ldots,k-2}$$\end{document}, the subspace arrangement with defining ideal generated by the (n − j)-fold products of the defining linear forms of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}}$$\end{document} is a set-theoretic complete intersection, which is equivalent to saying that star configurations have this property.
引用
收藏
页码:343 / 349
页数:6
相关论文
共 10 条
[1]  
Geramita A.V.(2013)Star configurations in J. Algebra 376 279-299
[2]  
Harbourne B.(1962)Complete intersections and connectedness American J. Math. 84 497-508
[3]  
Migliore J.(1984)On set-theoretic intersections J. Algebra 87 105-112
[4]  
Hartshorne R.(1977)On set-theoretic intersections J. Algebra 48 401-408
[5]  
Lyubeznik G.(1979)Note on set-theoretic intersections of subvarieties of projective space Math. Ann. 245 247-253
[6]  
Schenzel P.(2010)On the De Boer-Pellikaan method for computing minimum distance J. Symbolic Comput. 45 965-974
[7]  
Vogel W.(undefined)undefined undefined undefined undefined-undefined
[8]  
Schmitt T.(undefined)undefined undefined undefined undefined-undefined
[9]  
Vogel W.(undefined)undefined undefined undefined undefined-undefined
[10]  
Tohǎneanu Ş.(undefined)undefined undefined undefined undefined-undefined