Another proof of Joseph and Letzter's separation of variables theorem for quantum groups

被引:0
作者
P. Baumann
机构
[1] Université Louis Pasteur et CNRS,Institut de Recherche Mathématique Avancée
来源
Transformation Groups | 2000年 / 5卷
关键词
Topological Group; Class Function; Algebraic Group; Quantum Group; Main Tool;
D O I
暂无
中图分类号
学科分类号
摘要
Let g be a simple finite-dimensional complex Lie algebra and letG be the corresponding simply-connected algebraic group. A theorem of Kostant states that the universal enveloping algebra of g is a free module over its center. A theorem of Richardson states that the algebra of regular functions ofG is a free module over the subalgebra of regular class functions. Joseph and Letzter extended Kostant's theorem to the case of the quantized enveloping algebra of g. Using the theory of crystal bases as the main tool, we prove a quantum analogue of Richardson's theorem. From it, we recover Joseph and Letzter's result by a kind of “quantum duality principle”.
引用
收藏
页码:3 / 20
页数:17
相关论文
共 18 条
[1]  
Baumann P.(1998)Classification of bicovariant differential calculi on quantum groups (a representation-theoretic approach) Commun. Math. Phys. 194 71-86
[2]  
Schmitt F.(1993)Eléments ad-finis de certains groupes quantiques C. R. Acad. Sci. Paris Sér. I Math. 316 327-329
[3]  
Caldero P.(1992)Quantum coadjoint action J. Amer. Math. Soc. 5 151-189
[4]  
De Concini C.(1989)О почми кокоммумамивных алгебрах Хопфа Алгебра и Анализ 1 30-46
[5]  
Kac V. G.(1994)Separation of variables for quantized enveloping algebras Amer. J. Math. 116 127-177
[6]  
Procesi C.(1994)A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras Invent. Math. 116 329-346
[7]  
Дринфельд В. Г.(1991)On crystal bases of the Q-analogue of universal enveloping algebras Duke Math. J. 63 465-516
[8]  
Joseph A.(1994)Crystal bases of modified quantized enveloping algebra Duke Math. J. 73 383-413
[9]  
Letzter G.(1963)Lie group representations on polynomial rings Amer. J. Math. 85 327-404
[10]  
Littelmann P.(1993)Braided matrix structure of the Sklyanin algebra and of the quantum Lorentz group Commun. Math. Phys. 156 607-638