Path integral for spinning particle in the plane wave field: Global and local projections

被引:0
|
作者
N. Boudiaf
T. Boudjedaa
L. Chetouani
机构
[1] Département de Physique,
[2] Faculté des Sciences,undefined
[3] Université Mentouri,undefined
[4] 25000 Constantine,undefined
[5] Algeria ,undefined
来源
The European Physical Journal C - Particles and Fields | 2001年 / 20卷
关键词
Wave Propagation; Plane Wave; Green Function; Classical Solution; Integral Formalism;
D O I
暂无
中图分类号
学科分类号
摘要
The Green function related to the problem of a Dirac particle interacting with a plane wave is calculated via the path integral formalism proposed recently by Alexandrou et al. according to the two so-called global and local projections. With the help of the incorporation of two simple identities, it is shown that the contribution to the calculation of the integrals comes essentially from classical solutions projected along the direction of wave propagation.
引用
收藏
页码:585 / 591
页数:6
相关论文
共 50 条
  • [1] Path integral for spinning particle in the plane wave field: Global and local projections
    Boudiaf, N
    Boudjedaa, T
    Chetouani, L
    EUROPEAN PHYSICAL JOURNAL C, 2001, 20 (03): : 585 - 591
  • [2] Spinning particle in interaction with plane wave field via path integral
    Zeggari, S
    Boudjedaa, T
    Chetouani, L
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2001, 51 (03) : 185 - 198
  • [3] Path integral for Dirac particle in plane wave field
    Zeggari, S
    Boudjedaa, T
    Chetouani, L
    PHYSICA SCRIPTA, 2001, 64 (04): : 285 - 291
  • [4] Path integral for a Dirac particle in a quantized plane wave field
    B. Bentag
    A. Merdaci
    L. Chetouani
    The European Physical Journal C - Particles and Fields, 2002, 26 : 311 - 320
  • [5] Path integral for a Dirac particle in a quantized plane wave field
    Bentag, B
    Merdaci, A
    Chetouani, L
    EUROPEAN PHYSICAL JOURNAL C, 2002, 26 (02): : 311 - 320
  • [6] Path integral for spinning particle subjected to the constant electromagnetic field
    Merdaci, A.
    Boudiaf, N.
    Chetouani, L.
    MODERN PHYSICS LETTERS A, 2015, 30 (25)
  • [7] Path integral quantization of a spinning particle
    Kowalski-Glikman, Jerzy
    Rosati, Giacomo
    PHYSICAL REVIEW D, 2020, 101 (06)
  • [8] Path integral quantization of a spinning particle
    Unal, N
    FOUNDATIONS OF PHYSICS, 1998, 28 (05) : 755 - 762
  • [9] Path Integral Quantization of a Spinning Particle
    Nuri Ünal
    Foundations of Physics, 1998, 28 : 755 - 762
  • [10] Path Integral Treatment of a Dirac Particle in a Weak Gravitational Plane Wave
    Zabat, Sana
    Chetouani, Lyazid
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2010, 65 (05): : 431 - 444