Blocking sets of tangent and external lines to a hyperbolic quadric in PG(3,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{PG(3,q)}$$\end{document}, q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{q}$$\end{document} even

被引:0
作者
Binod Kumar Sahoo
Bikramaditya Sahu
机构
[1] National Institute of Science Education and Research,School of Mathematical Sciences
[2] Bhubaneswar,undefined
[3] HBNI,undefined
关键词
Projective space; blocking set; irreducible conic; hyperbolic quadric, generalized quadrangle; ovoid; 05B25; 51E21;
D O I
10.1007/s12044-018-0443-y
中图分类号
学科分类号
摘要
Let H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document} be a fixed hyperbolic quadric in the three-dimensional projective space PG(3, q), where q is a power of 2. Let E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {E}$$\end{document} (respectively T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document}) denote the set of all lines of PG(3, q) which are external (respectively tangent) to H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document}. We characterize the minimum size blocking sets of PG(3, q) with respect to each of the line sets T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document} and E∪T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {E}\cup \mathbb {T}$$\end{document}.
引用
收藏
相关论文
共 27 条
[1]  
Aguglia A(2006)Blocking sets of certain line sets related to a conic Des. Codes Cryptogr. 39 397-405
[2]  
Giulietti M(1955)Un’estensione del teorema di Segre-Kustaanheimo Boll. Un. Mat. Ital. 10 498-506
[3]  
Barlotti A(2009)On blocking sets of external lines to a hyperbolic quadric in J. Geom. 92 23-27
[4]  
Biondi P(2007), Beiträge Algebra Geom. 48 209-215
[5]  
Lo Re PM(1966) even J. Comb. Theory 1 96-104
[6]  
Biondi P(1962)On minimum size blocking sets of external lines to a quadric in Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 32 170-176
[7]  
Lo Re PM(2007)A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald codes European J. Combin. 28 36-42
[8]  
Storme L(1990)Gli ovaloidi in uno spazio tridimensionale di Galois di ordine 8 J. Geom. 38 95-106
[9]  
Bose RC(1992)Blocking sets of external lines to a conic in J. Geom. 44 140-159
[10]  
Burton RC(1994), J. Geom. 50 143-150