Controlled creation and decay of singly-quantized vortices in a polar magnetic phase

被引:10
作者
Xiao, Y. [1 ,5 ]
Borgh, M. O. [2 ]
Weiss, L. S. [1 ,6 ,7 ]
Blinova, A. A. [1 ,3 ]
Ruostekoski, J. [4 ]
Hall, D. S. [1 ]
机构
[1] Amherst Coll, Dept Phys & Astron, Amherst, MA 01002 USA
[2] Univ East Anglia, Fac Sci, Norwich, Norfolk, England
[3] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA
[4] Univ Lancaster, Dept Phys, Lancaster, England
[5] Univ Michigan, Dept Elect & Comp Engn, Ann Arbor, MI 48109 USA
[6] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[7] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
HALF-QUANTUM VORTICES; BOSE; DYNAMICS; VORTEX; DEFECTS;
D O I
10.1038/s42005-021-00554-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantized vortices appear in physical systems from superfluids and superconductors to liquid crystals and high energy physics. Unlike their scalar cousins, superfluids with complex internal structure can exhibit rich dynamics of decay and even fractional vorticity. Here, we experimentally and theoretically explore the creation and time evolution of vortex lines in the polar magnetic phase of a trapped spin-1 Rb-87 Bose-Einstein condensate. A process of phase-imprinting a nonsingular vortex, its decay into a pair of singular spinor vortices, and a rapid exchange of magnetic phases creates a pair of three-dimensional, singular singly-quantized vortex lines with core regions that are filled with atoms in the ferromagnetic phase. Atomic interactions guide the subsequent vortex dynamics, leading to core structures that suggest the decay of the singly-quantized vortices into half-quantum vortices. Superfluid vortices are important in many diverse systems, including spinor Bose-Einstein condensates. Here, the experimental and theoretical analysis of the creation and time evolution of vortices in the polar phase of a spin-1 Bose-Einstein condensate is presented, showing the evolution of single-quantum vortices towards half-quantum ones.
引用
收藏
页数:9
相关论文
共 61 条
[31]   Energetically stable singular vortex cores in an atomic spin-1 Bose-Einstein condensate [J].
Lovegrove, Justin ;
Borgh, Magnus O. ;
Ruostekoski, Janne .
PHYSICAL REVIEW A, 2012, 86 (01)
[32]   Coreless vortex ground state of the rotating spinor condensate [J].
Martikainen, JP ;
Collin, A ;
Suominen, KA .
PHYSICAL REVIEW A, 2002, 66 (05) :6
[33]   Vortices in a Bose-Einstein condensate [J].
Matthews, MR ;
Anderson, BP ;
Haljan, PC ;
Hall, DS ;
Wieman, CE ;
Cornell, EA .
PHYSICAL REVIEW LETTERS, 1999, 83 (13) :2498-2501
[34]   Braiding and Fusion of Non-Abelian Vortex Anyons [J].
Mawson, T. ;
Petersen, T. C. ;
Slingerland, J. K. ;
Simula, T. P. .
PHYSICAL REVIEW LETTERS, 2019, 123 (14)
[35]   Route to non-Abelian quantum turbulence in spinor Bose-Einstein condensates [J].
Mawson, Thomas ;
Ruben, Gary ;
Simula, Tapio .
PHYSICAL REVIEW A, 2015, 91 (06)
[36]   Mermin-Ho vortex in ferromagnetic spinor Bose-Einstein condensates [J].
Mizushima, T ;
Machida, K ;
Kita, T .
PHYSICAL REVIEW LETTERS, 2002, 89 (03) :304011-304014
[37]   Broken-axisymmetry phase of a spin-1 ferromagnetic Bose-Einstein condensate [J].
Murata, Keiji ;
Saito, Hiroki ;
Ueda, Masahito .
PHYSICAL REVIEW A, 2007, 75 (01)
[38]   A simple method to create a vortex in Bose-Einstein condensate of alkali atoms [J].
Nakahara, M ;
Isoshima, T ;
Machida, K ;
Ogawa, S ;
Ohmi, T .
PHYSICA B, 2000, 284 :17-18
[39]   Observation of Vortex Dipoles in an Oblate Bose-Einstein Condensate [J].
Neely, T. W. ;
Samson, E. C. ;
Bradley, A. S. ;
Davis, M. J. ;
Anderson, B. P. .
PHYSICAL REVIEW LETTERS, 2010, 104 (16)
[40]   Bose-Einstein condensation with internal degrees of freedom in alkali atom gases [J].
Ohmi, T ;
Machida, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (06) :1822-1825