Controlled creation and decay of singly-quantized vortices in a polar magnetic phase

被引:10
作者
Xiao, Y. [1 ,5 ]
Borgh, M. O. [2 ]
Weiss, L. S. [1 ,6 ,7 ]
Blinova, A. A. [1 ,3 ]
Ruostekoski, J. [4 ]
Hall, D. S. [1 ]
机构
[1] Amherst Coll, Dept Phys & Astron, Amherst, MA 01002 USA
[2] Univ East Anglia, Fac Sci, Norwich, Norfolk, England
[3] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA
[4] Univ Lancaster, Dept Phys, Lancaster, England
[5] Univ Michigan, Dept Elect & Comp Engn, Ann Arbor, MI 48109 USA
[6] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[7] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
HALF-QUANTUM VORTICES; BOSE; DYNAMICS; VORTEX; DEFECTS;
D O I
10.1038/s42005-021-00554-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantized vortices appear in physical systems from superfluids and superconductors to liquid crystals and high energy physics. Unlike their scalar cousins, superfluids with complex internal structure can exhibit rich dynamics of decay and even fractional vorticity. Here, we experimentally and theoretically explore the creation and time evolution of vortex lines in the polar magnetic phase of a trapped spin-1 Rb-87 Bose-Einstein condensate. A process of phase-imprinting a nonsingular vortex, its decay into a pair of singular spinor vortices, and a rapid exchange of magnetic phases creates a pair of three-dimensional, singular singly-quantized vortex lines with core regions that are filled with atoms in the ferromagnetic phase. Atomic interactions guide the subsequent vortex dynamics, leading to core structures that suggest the decay of the singly-quantized vortices into half-quantum vortices. Superfluid vortices are important in many diverse systems, including spinor Bose-Einstein condensates. Here, the experimental and theoretical analysis of the creation and time evolution of vortices in the polar phase of a spin-1 Bose-Einstein condensate is presented, showing the evolution of single-quantum vortices towards half-quantum ones.
引用
收藏
页数:9
相关论文
共 61 条
[1]   Quantized rotation of atoms from photons with orbital angular momentum [J].
Andersen, M. F. ;
Ryu, C. ;
Clade, Pierre ;
Natarajan, Vasant ;
Vaziri, A. ;
Helmerson, K. ;
Phillips, W. D. .
PHYSICAL REVIEW LETTERS, 2006, 97 (17)
[2]  
[Anonymous], 1990, Superfluidity and Superconductivity
[3]   Observation of Half-Quantum Vortices in Topological Superfluid 3He [J].
Autti, S. ;
Dmitriev, V. V. ;
Makinen, J. T. ;
Soldatov, A. A. ;
Volovik, G. E. ;
Yudin, A. N. ;
Zavjalov, V. V. ;
Eltsov, V. B. .
PHYSICAL REVIEW LETTERS, 2016, 117 (25)
[4]   Classifying vortices in S=3 Bose-Einstein condensates [J].
Barnett, Ryan ;
Turner, Ari ;
Demler, Eugene .
PHYSICAL REVIEW A, 2007, 76 (01)
[5]   Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface [J].
Bert, Julie A. ;
Kalisky, Beena ;
Bell, Christopher ;
Kim, Minu ;
Hikita, Yasuyuki ;
Hwang, Harold Y. ;
Moler, Kathryn A. .
NATURE PHYSICS, 2011, 7 (10) :767-771
[6]   Internal structure and stability of vortices in a dipolar spinor Bose-Einstein condensate [J].
Borgh, Magnus O. ;
Lovegrove, Justin ;
Ruostekoski, Janne .
PHYSICAL REVIEW A, 2017, 95 (05)
[7]   Core Structure and Non-Abelian Reconnection of Defects in a Biaxial Nematic Spin-2 Bose-Einstein Condensate [J].
Borgh, Magnus O. ;
Ruostekoski, Janne .
PHYSICAL REVIEW LETTERS, 2016, 117 (27)
[8]   Stable Core Symmetries and Confined Textures for a Vortex Line in a Spinor Bose-Einstein Condensate [J].
Borgh, Magnus O. ;
Nitta, Muneto ;
Ruostekoski, Janne .
PHYSICAL REVIEW LETTERS, 2016, 116 (08)
[9]   Topological Interface Engineering and Defect Crossing in Ultracold Atomic Gases [J].
Borgh, Magnus O. ;
Ruostekoski, Janne .
PHYSICAL REVIEW LETTERS, 2012, 109 (01)
[10]   Relic topological defects from brane annihilation simulated in superfluid 3He [J].
Bradley, D. I. ;
Fisher, S. N. ;
Guenault, A. M. ;
Haley, R. P. ;
Kopu, J. ;
Martin, H. ;
Pickett, G. R. ;
Roberts, J. E. ;
Tsepelin, V. .
NATURE PHYSICS, 2008, 4 (01) :46-49