A Note on the Volume Growth Criterion for Stochastic Completeness of Weighted Graphs

被引:0
作者
Xueping Huang
机构
[1] University of Bielefeld,Department of Mathematics
来源
Potential Analysis | 2014年 / 40卷
关键词
Stochastic completeness; Weighted graphs; Metric graphs; Weak Omori–Yau maximum principle; Strongly local Dirichlet spaces; Primary 05C81; Secondary 60J27;
D O I
暂无
中图分类号
学科分类号
摘要
This paper gives complementary results of Folz (Trans Am Math Soc, 2013). We first generalize the weak Omori–Yau maximum principle to the setting of strongly local Dirichlet forms. As an application, we obtain an analytic approach to compare the stochastic completeness of a weighted graph with that of an associated metric graph. This comparison result played an essential role in the volume growth criterion of Folz (Trans Am Math Soc, 2013), who first proved it via a probabilistic approach. We also give an alternative analytic proof based on a criterion in Fukushima et al. (1994).
引用
收藏
页码:117 / 142
页数:25
相关论文
共 59 条
  • [1] Bär C(2010)Stochastic completeness and volume growth Proc. Am. Math. Soc. 138 2629-2640
  • [2] Bessa GP(1991)Formes de Dirichlet et estimations structurelles dans les milieux discontinus C. R. Acad. Sci. Paris Sér. I Math. 313 593-598
  • [3] Biroli M(1995)A Saint–Venant type principle for Dirichlet forms on discontinuous media Ann. Mat. Pura Appl. 169 125-181
  • [4] Mosco U(1928)Über die partiellen differenzengleichungen der mathematischen physik Math. Ann. 100 32-74
  • [5] Biroli M(1992)Heat kernel bounds, conservation of probability and the Feller property J. Anal. Math. 58 99-119
  • [6] Mosco U(1956)Boundaries induced by non-negative matrices Trans. Am. Math. Soc. 83 19-54
  • [7] Courant R(1957)On boundaries and lateral conditions for the Kolmogorov differential equations Ann. Math. 65 527-570
  • [8] Friedrichs K(2011)Gaussian upper bounds for heat kernels of continuous time simple random walks Electr. J. Probab. 16 1693-1722
  • [9] Lewy H(1988)Stochastically complete manifolds and summable harmonic functions Izv. Akad. Nauk SSSR Ser. Mat. 52 1102-1108
  • [10] Davies EB(1999)Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds Bull. Am. Math. Soc. 36 135-249