Toeplitz Operators on Arveson and Dirichlet Spaces

被引:0
|
作者
Daniel Alpay
H. Turgay Kaptanoğlu
机构
[1] Ben-Gurion University of the Negev,Department of Mathematics
[2] Bilkent University,Department of Mathematics
来源
关键词
Primary 47B35, 32A37; Secondary 47B07, 47B10, 47B37, 47B33, 46E22, 32A36, 32A35; Toeplitz operator; weighted shift; -isometry; unitary equivalence; Carleson measure; Berezin transform; Bergman metric; Bergman projection; weak convergence; Schatten-von Neumann ideal; Besov; Bergman; Dirichlet; Hardy; Arveson space;
D O I
暂无
中图分类号
学科分类号
摘要
We define Toeplitz operators on all Dirichlet spaces on the unit ball of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{C}^{N}$$ \end{document} and develop their basic properties. We characterize bounded, compact, and Schatten-class Toeplitz operators with positive symbols in terms of Carleson measures and Berezin transforms. Our results naturally extend those known for weighted Bergman spaces, a special case applies to the Arveson space, and we recover the classical Hardy-space Toeplitz operators in a limiting case; thus we unify the theory of Toeplitz operators on all these spaces. We apply our operators to a characterization of bounded, compact, and Schatten-class weighted composition operators on weighted Bergman spaces of the ball. We lastly investigate some connections between Toeplitz and shift operators.
引用
收藏
页码:1 / 33
页数:32
相关论文
共 50 条