Existence and uniqueness of positive solutions for first-order nonlinear Liouville–Caputo fractional differential equations

被引:0
作者
Abdelouaheb Ardjouni
Ahcene Djoudi
机构
[1] University of Souk Ahras,Department of Mathematics and Informatics
[2] University of Annaba,Applied Mathematics Lab, Faculty of Sciences, Department of Mathematics
来源
São Paulo Journal of Mathematical Sciences | 2020年 / 14卷
关键词
Fixed points; Fractional differential equations; Positive solutions; Existence; Uniqueness; 34A08; 34A12;
D O I
暂无
中图分类号
学科分类号
摘要
We study the existence and uniqueness of positive solutions of the first-order nonlinear Liouville–Caputo fractional differential equation CDαxt-g(t,x(t))=ft,xt,0<t≤1,x0=x0>g0,x0>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{l} ^{C}D^{\alpha }\left( x\left( t\right) -g( t,x( t) ) \right) =f\left( t,x\left( t\right) \right) ,\quad 0<t\le 1, \\ x\left( 0\right) =x_{0}>g\left( 0,x_{0}\right) >0, \end{array} \right. \end{aligned}$$\end{document}where 0<α≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha \le 1$$\end{document}. In the process we convert the given fractional differential equation into an equivalent integral equation. Then we construct appropriate mappings and employ the Krasnoselskii fixed point theorem and the method of upper and lower solutions to show the existence of a positive solution of this equation. We also use the Banach fixed point theorem to show the existence of a unique positive solution. Finally, an example is given to illustrate our results.
引用
收藏
页码:381 / 390
页数:9
相关论文
共 26 条
[11]  
Boulares H(2000)The existence of a positive solution for a nonlinear fractional differential equation J. Math. Anal. Appl. 252 804-812
[12]  
Ardjouni A(undefined)undefined undefined undefined undefined-undefined
[13]  
Laskri Y(undefined)undefined undefined undefined undefined-undefined
[14]  
Chidouh A(undefined)undefined undefined undefined undefined-undefined
[15]  
Guezane-Lakoud A(undefined)undefined undefined undefined undefined-undefined
[16]  
Bebbouchi R(undefined)undefined undefined undefined undefined-undefined
[17]  
Ge F(undefined)undefined undefined undefined undefined-undefined
[18]  
Kou C(undefined)undefined undefined undefined undefined-undefined
[19]  
Ge F(undefined)undefined undefined undefined undefined-undefined
[20]  
Kou C(undefined)undefined undefined undefined undefined-undefined