Existence and uniqueness of positive solutions for first-order nonlinear Liouville–Caputo fractional differential equations

被引:0
作者
Abdelouaheb Ardjouni
Ahcene Djoudi
机构
[1] University of Souk Ahras,Department of Mathematics and Informatics
[2] University of Annaba,Applied Mathematics Lab, Faculty of Sciences, Department of Mathematics
来源
São Paulo Journal of Mathematical Sciences | 2020年 / 14卷
关键词
Fixed points; Fractional differential equations; Positive solutions; Existence; Uniqueness; 34A08; 34A12;
D O I
暂无
中图分类号
学科分类号
摘要
We study the existence and uniqueness of positive solutions of the first-order nonlinear Liouville–Caputo fractional differential equation CDαxt-g(t,x(t))=ft,xt,0<t≤1,x0=x0>g0,x0>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{l} ^{C}D^{\alpha }\left( x\left( t\right) -g( t,x( t) ) \right) =f\left( t,x\left( t\right) \right) ,\quad 0<t\le 1, \\ x\left( 0\right) =x_{0}>g\left( 0,x_{0}\right) >0, \end{array} \right. \end{aligned}$$\end{document}where 0<α≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha \le 1$$\end{document}. In the process we convert the given fractional differential equation into an equivalent integral equation. Then we construct appropriate mappings and employ the Krasnoselskii fixed point theorem and the method of upper and lower solutions to show the existence of a positive solution of this equation. We also use the Banach fixed point theorem to show the existence of a unique positive solution. Finally, an example is given to illustrate our results.
引用
收藏
页码:381 / 390
页数:9
相关论文
共 26 条
[1]  
Abbas S(2011)Existence of solutions to fractional order ordinary and delay differential equations and applications Electron. J. Differ. Equ. 2011 1-11
[2]  
Abdo MA(2018)Positive solutions of a fractional differential equation with integral boundary conditions J. Appl. Math. Comput. Mech. 17 5-15
[3]  
Wahash HA(2010)Existence of fractional functional differential equations Comput. Math. Appl. 59 1095-1100
[4]  
Panchat SK(2017)Positive solutions for nonlinear fractional differential equations Positivity 21 1201-1212
[5]  
Agarwal RP(2016)Stability in delay nonlinear fractional differential equations Rend. Circ. Mat. Palermo 65 243-253
[6]  
Zhou Y(2016)Positive solutions of the fractional relaxation equation using lower and upper solutions Vietnam J. Math. 44 739-748
[7]  
He Y(2015)Stability analysis by Krasnoselskii’s fixed point theorem for nonlinear fractional differential equations Appl. Math. Comput. 257 308-316
[8]  
Boulares H(2015)Asymptotic stability of solutions of nonlinear fractional differential equations of order J. Shanghai Normal Univ. 44 284-290
[9]  
Ardjouni A(2011)Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis Nonlinear Anal. 74 5975-5986
[10]  
Laskri Y(2013)New existence results of positive solution for a class of nonlinear fractional differential equations Acta Math. Sci. 33 847-854