On Fermat and Mersenne numbers expressible as product of two k-Fibonacci numbers

被引:0
作者
Mohand O. Hernane
Salah Eddine Rihane
Safia Seffah
Alain Togbé
机构
[1] Université des Sciences et de la Technologie Houari Boumadienne,Mathematics Institute
[2] University Center of Mila,Department of Mathematics, Institute of Science and Technology
[3] Purdue University Northwest,Department of Mathematics and Statistics
来源
Boletín de la Sociedad Matemática Mexicana | 2022年 / 28卷
关键词
-Fibonacci numbers; Fermat numbers; Mersenne numbers; Linear form in logarithms; Reduction method; 11B39; 11J86;
D O I
暂无
中图分类号
学科分类号
摘要
Let k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document} be an integer. A generalization of the well-known Fibonacci sequence is the k-Fibonacci sequence. For this sequence, the first k terms are 0,…,0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0,\ldots ,0,1$$\end{document} and each term afterwards is the sum of the preceding k terms. The goal of this paper is to investigate the Fermat and Mersenne numbers having representation as product of two k-Fibonacci numbers.
引用
收藏
相关论文
共 29 条
[1]  
Baker A(1969)The equations Q. J. Math. Oxf. Ser. (2) 20 129-137
[2]  
Davenport H(2013) and Publ. Math. Debr. 82 623-639
[3]  
Bravo JJ(2015)On a conjecture about repdigits in Monatsh. Math. 176 31-51
[4]  
Luca F(2016)-generalized Fibonacci sequences Glas. Mat. 51 307-319
[5]  
Bravo JJ(2016)Repdigits as sums of two Miskolc Math. Notes 17 85-100
[6]  
Luca F(2018)-Fibonacci numbers Colloq. Math. 152 299-315
[7]  
Bravo JJ(2020)Mersenne Math. Bohem. 145 19-32
[8]  
Gómez CA(2006)-Fibonacci numbers Ann. Math. 163 969-1018
[9]  
Luca F(2016)Powers of two as sums of two Ann. Math. Inform. 46 37-53
[10]  
Bravo JJ(1998)-Fibonacci numbers Q. J. Math. Oxf. Ser. (2) 49 291-306