Fenton-like degradation of sulfamethazine using Fe3O4/Mn3O4 nanocomposite catalyst: kinetics and catalytic mechanism

被引:0
|
作者
Zhong Wan
Jianlong Wang
机构
[1] Tsinghua University,Collaborative Innovation Center for Advanced Nuclear Energy Science Building, INEB
[2] Tsinghua University,Beijing Key Laboratory of Radioactive Waste Treatment
关键词
Fenton-like process; Fe; O; /Mn; O; nanocomposites; Sulfamethazine; Antibiotics;
D O I
暂无
中图分类号
学科分类号
摘要
The kinetics and catalytic mechanism of sulfamethazine (SMT) degradation using Fe3O4/Mn3O4 nanocomposite as catalysts in heterogeneous Fenton-like process were investigated. The degradation process of SMT conformed to first-order kinetic model. The apparent activation energy (Ea) of the process was calculated to be 40.5 kJ/mol. The reusability and stability of the catalysts were evaluated based on the results of the successive batch experiments. The intermediates were identified and quantified by ion chromatography (IC), high-performance liquid chromatography (HPLC), and gas chromatography–mass spectrometry (GC-MS). The results suggested that the bonds of S–C, N–C, and S–N were broken mainly by ·OH attack to form the organic compounds, which were gradually decomposed into small-molecule organic acids, such as oxalic acid, propionic acid, and formic acid. The possible catalytic mechanism for SMT degradation was tentatively proposed.
引用
收藏
页码:568 / 577
页数:9
相关论文
共 50 条
  • [31] Magnetic nanoreactor Fe3O4@HNTs as heterogeneous Fenton-like catalyst for acid fuchsin degradation: Efficiency, kinetics and mechanism
    Dai, Li -Yuan
    Li, Bo
    Xu, Huan-Yan
    Zhang, Si-Qun
    Xu, Yan
    Qi, Shu-Yan
    He, Xiu-Lan
    Jin, Li-Guo
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2023, 180
  • [32] Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: combination mechanism and affecting parameters
    Xu, Huan-Yan
    Wang, Yuan
    Shi, Tian-Nuo
    Zhao, Hang
    Tan, Qu
    Zhao, Bo-Chao
    He, Xiu-Lan
    Qi, Shu-Yan
    FRONTIERS OF MATERIALS SCIENCE, 2018, 12 (01) : 21 - 33
  • [33] Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: combination mechanism and affecting parameters
    Huan-Yan Xu
    Yuan Wang
    Tian-Nuo Shi
    Hang Zhao
    Qu Tan
    Bo-Chao Zhao
    Xiu-Lan He
    Shu-Yan Qi
    Frontiers of Materials Science, 2018, 12 : 21 - 33
  • [34] Structural and magnetic characterization of Fe3O4/Mn3O4 superlattices
    Chern, G
    Horng, L
    Lin, MZ
    Li, SM
    Lee, DS
    Hou, TY
    Tai, MF
    Wu, TH
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2000, 209 (1-3) : 138 - 141
  • [35] The enhanced catalytic activity and stability of Fe3O4-S@C Fenton-like catalyst for phenol degradation
    Li, Xin
    Zhang, Xiao
    Wang, Jiankang
    Chen, Changju
    Yao, Zhongping
    Jiang, Zhaohua
    RESEARCH ON CHEMICAL INTERMEDIATES, 2021, 47 (07) : 3025 - 3035
  • [36] The enhanced catalytic activity and stability of Fe3O4-S@C Fenton-like catalyst for phenol degradation
    Xin Li
    Xiao Zhang
    Jiankang Wang
    Changju Chen
    Zhongping Yao
    Zhaohua Jiang
    Research on Chemical Intermediates, 2021, 47 : 3025 - 3035
  • [37] Degradation of p-Nitrophenol using magnetic Fe0/Fe3O4/Coke composite as a heterogeneous Fenton-like catalyst
    Wan, Dong
    Li, Wenbing
    Wang, Guanghua
    Lu, Lulu
    Wei, Xiaobi
    SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 574 : 1326 - 1334
  • [38] Improved degradation of lignocellulosic biomass pretreated by Fenton-like reaction using Fe3O4 magnetic nanoparticles
    Koo, Hyunseok
    Salunke, Bipinchandra K.
    Iskandarani, Bilal
    Oh, Won-Gyun
    Kim, Beom Soo
    BIOTECHNOLOGY AND BIOPROCESS ENGINEERING, 2017, 22 (05) : 597 - 603
  • [39] Improved degradation of lignocellulosic biomass pretreated by Fenton-like reaction using Fe3O4 magnetic nanoparticles
    Hyunseok Koo
    Bipinchandra K. Salunke
    Bilal Iskandarani
    Won-Gyun Oh
    Beom Soo Kim
    Biotechnology and Bioprocess Engineering, 2017, 22 : 597 - 603
  • [40] Polyol-made Mn3O4 nanocrystals as efficient Fenton-like catalysts
    Rhadfi, Tarik
    Piquemal, Jean-Yves
    Sicard, Lorette
    Herbst, Frederic
    Briot, Emmanuel
    Benedetti, Marc
    Atlamsani, Ahmed
    APPLIED CATALYSIS A-GENERAL, 2010, 386 (1-2) : 132 - 139