An optimal approximation of the characteristics of the GI/M/1 queue with two-stage service policy

被引:0
|
作者
Mouloud Cherfaoui
Aicha Bareche
机构
[1] University of Bejaia,Research Unit LaMOS (Modeling and Optimization of Systems)
[2] University of Biskra,Department of Mathematics
来源
Operational Research | 2020年 / 20卷
关键词
Hysteretic queue; Markov chain; Perturbation; Approximation; Strong stability; Constrained nonlinear optimization;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider an GI/M/1 system with two-stage service policy, having a service rate (μ1,μ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mu _1, \mu _2)$$\end{document}, for which we determine its global transition operator. After that, with using the strong stability method we establish the approximation conditions for the stationary characteristics of this system by those of the standard GI/M/1 system. Under assumption that the approximation conditions are satisfied, we give the estimate of the deviation (stability inequalities) between the stationary distribution of the GI/M/1 system with two-stage service policy and those of the standard GI/M/1 system for three considered cases: the standard system has a service rate μ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _1$$\end{document} (minimal threshold policy), the standard system has a service rate μ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _2$$\end{document} (maximal threshold policy) and the standard system has a service rate μ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu ^*$$\end{document} minimizing the deviation (optimal policy). To calculate these deviations, the situation is modeled by a mathematical optimization problem which belongs to the minimization of a constrained nonlinear multi-variable function. Finally, numerical studies are performed to support the theoretical obtained results.
引用
收藏
页码:959 / 983
页数:24
相关论文
共 50 条