On the n-vertex trees with sixth to fifteenth maximum harmonic indices

被引:0
作者
Akbar Ali
Selvaraj Balachandran
Suresh Elumalai
Toufik Mansour
机构
[1] University of Management and Technology,Knowledge Unit of Science
[2] University of Ha’il,Department of Mathematics, Faculty of Science
[3] School of Arts,Department of Mathematics
[4] Sciences and Humanities,Department of Mathematics and Applied Mathematics
[5] SASTRA Deemed University,Department of Mathematics
[6] University of the Free State,undefined
[7] University of Haifa,undefined
来源
Afrika Matematika | 2020年 / 31卷
关键词
Harmonic index; Extremal problem; Trees; 05C07; 05C35;
D O I
暂无
中图分类号
学科分类号
摘要
The harmonic index of a graph G is denoted by H(G) and is defined as H(G)=∑uv∈E(G)2du+dv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(G)=\sum _{uv\in E(G)} \frac{2}{d_{u}+d_{v}}$$\end{document}, where du\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_u$$\end{document}, dv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_v$$\end{document} denote the degrees of the vertices u, v, respectively, of G and E(G) is the edge set of G. In this paper, the graphs having sixth to fifteenth maximum harmonic indices are characterized from the class of all n-vertex trees for sufficiently large n.
引用
收藏
页码:771 / 780
页数:9
相关论文
共 48 条
  • [1] Ali A(2018)Counter examples to a conjecture concerning harmonic index Asian Eur. J. Math. 11 1850035-311
  • [2] Ali A(2019)Harmonic index and its generalizations: extremal results and bounds MATCH Commun. Math. Comput. Chem. 81 249-343
  • [3] Zhong L(2012)On the harmonic index and the minimum degree of a graph Roman. J. Inform. Sci. Technol. 15 335-248
  • [4] Gutman I(2017)On harmonic indices of trees, unicyclic graphs and bicyclic graphs Ars Comb. 130 239-197
  • [5] Chang R(2018)The minimum value of the harmonic index for a graph with the minimum degree two Asian Eur. J. Math. 60 187-726
  • [6] Zhu Y(1987)On conjectures of Graffiti—II Congr. Numer. 12 716-299
  • [7] Deng H(2013)On the harmonic index of the unicyclic and bicyclic graphs WSEAS Trans. Math. 128 295-298
  • [8] Balachandran S(2016)Note on the harmonic index of a graph Ars Comb. 135 283-1620
  • [9] Ayyaswamy SK(2017)Harmonic index of graphs with more than one cut-vertex Ars Comb. 44 1607-33
  • [10] Venkatakrishnan YB(2014)The harmonic index of a graph Rocky Mt. J. Math. 7 25-315