Conversion of adult endothelium to immunocompetent haematopoietic stem cells

被引:0
|
作者
Raphael Lis
Charles C. Karrasch
Michael G. Poulos
Balvir Kunar
David Redmond
Jose G. Barcia Duran
Chaitanya R. Badwe
William Schachterle
Michael Ginsberg
Jenny Xiang
Arash Rafii Tabrizi
Koji Shido
Zev Rosenwaks
Olivier Elemento
Nancy A. Speck
Jason M. Butler
Joseph M. Scandura
Shahin Rafii
机构
[1] Ansary Stem Cell Institute,Division of Regenerative Medicine, Department of Medicine
[2] Weill Cornell Medicine,Department of Surgery, Department of Medicine
[3] Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility,Department of Obstetrics and Gynecology
[4] Weill Cornell Medicine,Institute for Regenerative Medicine and Department of Cell and Developmental Biology
[5] Weill Cornell Medicine,Department of Medicine
[6] Institute for Computational Biomedicine & Institute for Precision Medicine,undefined
[7] Weill Cornell Medicine,undefined
[8] Angiocrine Bioscience,undefined
[9] Genomics Resources Core Facility,undefined
[10] Weill Cornell Medicine,undefined
[11] Stem Cell and Microenvironment Laboratory,undefined
[12] Weill Cornell Medicine in Qatar,undefined
[13] Education City,undefined
[14] Qatar Foundation,undefined
[15] Abramson Family Cancer Research Institute,undefined
[16] University of Pennsylvania,undefined
[17] Hematology-Oncology,undefined
[18] Weill Cornell Medicine and the New York Presbyterian Hospital,undefined
来源
Nature | 2017年 / 545卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Developmental pathways that orchestrate the fleeting transition of endothelial cells into haematopoietic stem cells remain undefined. Here we demonstrate a tractable approach for fully reprogramming adult mouse endothelial cells to haematopoietic stem cells (rEC-HSCs) through transient expression of the transcription-factor-encoding genes Fosb, Gfi1, Runx1, and Spi1 (collectively denoted hereafter as FGRS) and vascular-niche-derived angiocrine factors. The induction phase (days 0–8) of conversion is initiated by expression of FGRS in mature endothelial cells, which results in endogenous Runx1 expression. During the specification phase (days 8–20), RUNX1+ FGRS-transduced endothelial cells commit to a haematopoietic fate, yielding rEC-HSCs that no longer require FGRS expression. The vascular niche drives a robust self-renewal and expansion phase of rEC-HSCs (days 20–28). rEC-HSCs have a transcriptome and long-term self-renewal capacity similar to those of adult haematopoietic stem cells, and can be used for clonal engraftment and serial primary and secondary multi-lineage reconstitution, including antigen-dependent adaptive immune function. Inhibition of TGFβ and CXCR7 or activation of BMP and CXCR4 signalling enhanced generation of rEC-HSCs. Pluripotency-independent conversion of endothelial cells into autologous authentic engraftable haematopoietic stem cells could aid treatment of haematological disorders.
引用
收藏
页码:439 / 445
页数:6
相关论文
共 50 条
  • [31] In vivo generation of haematopoietic stem/progenitor cells from bone marrow-derived haemogenic endothelium
    Laurent Yvernogeau
    Rodolphe Gautier
    Laurence Petit
    Hanane Khoury
    Frédéric Relaix
    Vanessa Ribes
    Helen Sang
    Pierre Charbord
    Michèle Souyri
    Catherine Robin
    Thierry Jaffredo
    Nature Cell Biology, 2019, 21 : 1334 - 1345
  • [32] Hematopoietic Stem and Progenitor Cells from Human Pluripotent Stem Cells Via Transcription Factor Conversion of Hemogenic Endothelium
    Sugimura, Ryohichi
    Han, Areum
    Jha, Deepak
    Lu, Yi-Fen
    Goettel, Jeremy A.
    Serrao, Erik
    Rowe, Robert Grant
    Wong, Irene
    Sousa, Patricia
    Ditadi, Andrea
    Keller, Gordon
    Engelman, Alan
    Snapper, Scott
    Doulatov, Sergei
    Daley, George Q.
    BLOOD, 2016, 128 (22)
  • [33] Development of human natural killer cells from adult haematopoietic stem cells in an in vitro system using human mesenchymal stem cells
    Pfeiffer, M.
    Wompner, M.
    Muller, I.
    Viebahn, S.
    Gieseke, F.
    Handgretinger, R.
    Lang, P.
    BONE MARROW TRANSPLANTATION, 2007, 39 : S123 - S123
  • [34] Formation of haematopoietic microenvironment and haematopoietic stem cells from single human bone marrow stem cells
    Huang, S.
    Terstappen, L.W.M.M.
    Nature, 1994, 368 (6472)
  • [35] Differentiating haematopoietic stem cells in tumour-bearing adult human liver.
    Golden-Mason, L
    Curry, MP
    Nolan, N
    Traynor, O
    McEntee, G
    Kelly, J
    Hegarty, JE
    O'Farrelly, C
    HEPATOLOGY, 1999, 30 (04) : 253A - 253A
  • [36] Haematopoietic stem and progenitor cell heterogeneity is inherited from the embryonic endothelium
    Joey J. Ghersi
    Gabriel Baldissera
    Jared Hintzen
    Stephanie A. Luff
    Siyuan Cheng
    Ivan Fan Xia
    Christopher M. Sturgeon
    Stefania Nicoli
    Nature Cell Biology, 2023, 25 : 1135 - 1145
  • [37] Regeneration of ischemic cardiac muscle and vascular endothelium by adult hematopoietic stem cells
    Jackson, KA
    Majka, SM
    Wang, HY
    Pocius, J
    Hartley, CJ
    Majesky, MW
    Entman, ML
    Michael, LH
    Hirschi, KK
    Goodell, MA
    CIRCULATION, 2001, 104 (17) : 289 - 289
  • [38] Haematopoietic stem and progenitor cell heterogeneity is inherited from the embryonic endothelium
    Ghersi, Joey J.
    Baldissera, Gabriel
    Hintzen, Jared
    Luff, Stephanie A.
    Cheng, Siyuan
    Xia, Ivan Fan
    Sturgeon, Christopher M.
    Nicoli, Stefania
    NATURE CELL BIOLOGY, 2023, 25 (08) : 1135 - +
  • [39] Do haematopoietic stem cells age?
    Kenneth Dorshkind
    Thomas Höfer
    Encarnacion Montecino-Rodriguez
    Peter D. Pioli
    Hans-Reimer Rodewald
    Nature Reviews Immunology, 2020, 20 : 196 - 202
  • [40] Do haematopoietic stem cells age?
    Dorshkind, Kenneth
    Hoefer, Thomas
    Montecino-Rodriguez, Encarnacion
    Pioli, Peter D.
    Rodewald, Hans-Reimer
    NATURE REVIEWS IMMUNOLOGY, 2020, 20 (03) : 196 - 202