Conversion of adult endothelium to immunocompetent haematopoietic stem cells

被引:0
|
作者
Raphael Lis
Charles C. Karrasch
Michael G. Poulos
Balvir Kunar
David Redmond
Jose G. Barcia Duran
Chaitanya R. Badwe
William Schachterle
Michael Ginsberg
Jenny Xiang
Arash Rafii Tabrizi
Koji Shido
Zev Rosenwaks
Olivier Elemento
Nancy A. Speck
Jason M. Butler
Joseph M. Scandura
Shahin Rafii
机构
[1] Ansary Stem Cell Institute,Division of Regenerative Medicine, Department of Medicine
[2] Weill Cornell Medicine,Department of Surgery, Department of Medicine
[3] Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility,Department of Obstetrics and Gynecology
[4] Weill Cornell Medicine,Institute for Regenerative Medicine and Department of Cell and Developmental Biology
[5] Weill Cornell Medicine,Department of Medicine
[6] Institute for Computational Biomedicine & Institute for Precision Medicine,undefined
[7] Weill Cornell Medicine,undefined
[8] Angiocrine Bioscience,undefined
[9] Genomics Resources Core Facility,undefined
[10] Weill Cornell Medicine,undefined
[11] Stem Cell and Microenvironment Laboratory,undefined
[12] Weill Cornell Medicine in Qatar,undefined
[13] Education City,undefined
[14] Qatar Foundation,undefined
[15] Abramson Family Cancer Research Institute,undefined
[16] University of Pennsylvania,undefined
[17] Hematology-Oncology,undefined
[18] Weill Cornell Medicine and the New York Presbyterian Hospital,undefined
来源
Nature | 2017年 / 545卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Developmental pathways that orchestrate the fleeting transition of endothelial cells into haematopoietic stem cells remain undefined. Here we demonstrate a tractable approach for fully reprogramming adult mouse endothelial cells to haematopoietic stem cells (rEC-HSCs) through transient expression of the transcription-factor-encoding genes Fosb, Gfi1, Runx1, and Spi1 (collectively denoted hereafter as FGRS) and vascular-niche-derived angiocrine factors. The induction phase (days 0–8) of conversion is initiated by expression of FGRS in mature endothelial cells, which results in endogenous Runx1 expression. During the specification phase (days 8–20), RUNX1+ FGRS-transduced endothelial cells commit to a haematopoietic fate, yielding rEC-HSCs that no longer require FGRS expression. The vascular niche drives a robust self-renewal and expansion phase of rEC-HSCs (days 20–28). rEC-HSCs have a transcriptome and long-term self-renewal capacity similar to those of adult haematopoietic stem cells, and can be used for clonal engraftment and serial primary and secondary multi-lineage reconstitution, including antigen-dependent adaptive immune function. Inhibition of TGFβ and CXCR7 or activation of BMP and CXCR4 signalling enhanced generation of rEC-HSCs. Pluripotency-independent conversion of endothelial cells into autologous authentic engraftable haematopoietic stem cells could aid treatment of haematological disorders.
引用
收藏
页码:439 / 445
页数:6
相关论文
共 50 条
  • [1] Conversion of adult endothelium to immunocompetent haematopoietic stem cells
    Lis, Raphael
    Karrasch, Charles C. .
    Poulos, Michael G.
    Kunar, Balvir
    Redmond, David
    Duran, Jose G. Barcia
    Badwe, Chaitanya R.
    Schachterle, William
    Ginsberg, Michael
    Xiang, Jenny
    Tabrizi, Arash Rafii
    Shido, Koji
    Rosenwaks, Zev
    Elemento, Olivier
    Speck, Nancy A. .
    Butler, Jason M. .
    Scandura, Joseph M. .
    Rafii, Shahin
    NATURE, 2017, 545 (7655) : 439 - +
  • [2] CONVERSION OF ADULT ENDOTHELIUM INTO IMMUNE-COMPETENT HAEMATOPOIETIC STEM CELLS
    Lis, Raphael
    Karrasch, Charles
    Poulos, Micheal
    Kunar, Balvir
    Redmond, David
    Duran, Jose Gabriel Barcia
    Badwe, Chaitanya
    Ginsberg, Micheal
    Schachterle, William
    Xiang, Jenny
    Tabrizi, Arash Rafii
    Shido, Koji
    Rosenwaks, Zev
    Elemento, Olivier
    Speck, Nancy
    Butler, Jason
    Scandura, Joseph
    Rafii, Shahin
    EXPERIMENTAL HEMATOLOGY, 2017, 53 : S82 - S82
  • [3] Conversion of Adult Human Endothelium to Lymphoid Competent Haematopoietic Stem Cells
    Lis, Raphael
    Itkin, Tomer
    Rafii, Shahin
    BLOOD, 2017, 130
  • [4] Endothelium and haematopoietic stem cell transplantation
    Carreras, E.
    BLOOD REVIEWS, 2007, 21 : S7 - S9
  • [5] Mapping human haematopoietic stem cells from haemogenic endothelium to birth
    Vincenzo Calvanese
    Sandra Capellera-Garcia
    Feiyang Ma
    Iman Fares
    Simone Liebscher
    Elizabeth S. Ng
    Sophia Ekstrand
    Júlia Aguadé-Gorgorió
    Anastasia Vavilina
    Diane Lefaudeux
    Brian Nadel
    Jacky Y. Li
    Yanling Wang
    Lydia K. Lee
    Reza Ardehali
    M. Luisa Iruela-Arispe
    Matteo Pellegrini
    Ed G. Stanley
    Andrew G. Elefanty
    Katja Schenke-Layland
    Hanna K. A. Mikkola
    Nature, 2022, 604 : 534 - 540
  • [6] Mapping human haematopoietic stem cells from haemogenic endothelium to birth
    Calvanese, Vincenzo
    Capellera-Garcia, Sandra
    Ma, Feiyang
    Fares, Iman
    Liebscher, Simone
    Ng, Elizabeth S.
    Ekstrand, Sophia
    Aguade-Gorgorio, Julia
    Vavilina, Anastasia
    Lefaudeux, Diane
    Nadel, Brian
    Li, Jacky Y.
    Wang, Yanling
    Lee, Lydia K.
    Ardehali, Reza
    Iruela-Arispe, M. Luisa
    Pellegrini, Matteo
    Stanley, Ed G.
    Elefanty, Andrew G.
    Schenke-Layland, Katja
    Mikkola, Hanna K. A.
    NATURE, 2022, 604 (7906) : 534 - +
  • [7] Haematopoietic stem cells derive directly from aortic endothelium during development
    Julien Y. Bertrand
    Neil C. Chi
    Buyung Santoso
    Shutian Teng
    Didier Y. R. Stainier
    David Traver
    Nature, 2010, 464 : 108 - 111
  • [8] Haematopoietic stem cells derive directly from aortic endothelium during development
    Bertrand, Julien Y.
    Chi, Neil C.
    Santoso, Buyung
    Teng, Shutian
    Stainier, Didier Y. R.
    Traver, David
    NATURE, 2010, 464 (7285) : 108 - U120
  • [9] T lineage differentiation in vitro of adult Haematopoietic Stem Cells
    Carlin, S
    Moore, J
    Zaunders, J
    Kelleher, A
    Ma, D
    CYTOMETRY PART A, 2006, 69A (05) : 399 - 400
  • [10] Haematopoietic stem cells
    Jonathan B Weitzman
    Genome Biology, 4 (1)