Fabricate organic thermoelectric modules use modified PCBM and PEDOT:PSS materials

被引:23
作者
Gao F. [1 ]
Liu Y. [1 ]
Xiong Y. [1 ]
Wu P. [1 ]
Hu B. [1 ]
Xu L. [1 ]
机构
[1] Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan
关键词
organic thermoelectric generator; poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT-PSS); thermocouple; 6.6]-phenyl-C61butyric acid methyl ester (PCBM);
D O I
10.1007/s12200-017-0712-x
中图分类号
学科分类号
摘要
In this paper, we fabricated an organic thermoelectric (TE) device with modified [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS); the device showed good stability in air condition. For n-leg, PCBM were doped with acridine orange base (3,6-bis (dimethylamino)acridine) (AOB) and 1,3-dimethyl-2,3-dihydro-1H-benzoimidazole (N-DMBI). Co-doped PCBM utilizes synergistic effects of AOB and N-DMBI, resulting in excellent electrical conductivity and Seebeck coefficient values reaching 2 S/cm and -500 mV/K, respectively, at room temperature with dopant molar ratio of 0.11. P-type leg used modified PEDOT:PSS. Based on modified PCBM and PEDOT:PSS materials, we fabricated a TE module device with 48 p-type and n-type thermocouple and tested their output voltage, short current, and power. Output voltage measured ~0.82 V, and generated power reached almost 945 mW with 75 K temperature gradient at 453 K hot-side temperature. These promising results showed potential of modified PEDOT and PCBM as TE materials for application in device optimization. © 2017, Higher Education Press and Springer-Verlag GmbH Germany.
引用
收藏
页码:117 / 123
页数:6
相关论文
共 42 条
[1]  
Venkatasubramanian R., Siivola E., Colpitts T., O'Quinn B., Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 413, 6856, pp. 597-602, (2001)
[2]  
Zhao D., Tan G., A review of thermoelectric cooling: materials, modeling and applications, Applied Thermal Engineering, 66, 1-2, pp. 15-24, (2014)
[3]  
Zhao L.D., Tan G.J., Hao S.Q., He J.Q., Pei Y., Chi H., Wang H., Gong S., Xu H., Dravid V.P., Uher C., Snyder G.J., Wolverton C., Kanatzidis M.G., Ultrahigh power factor and thermoelectric performance in hole doped single-crystal SnSe, Science, 351, 6269, pp. 141-144, (2016)
[4]  
Yan L., Shao M., Wang H., Dudis D., Urbas A., Hu B., High Seebeck effects from hybrid metal/polymer/metal thin-film devices, Advanced Materials, 23, 35, pp. 4120-4124, (2011)
[5]  
Taggart D.K., Yang Y., Kung S.C., McIntire T.M., Penner R.M., Enhanced thermoelectric metrics in ultra-long electrodeposited PEDOT nanowires, Nano Letters, 11, 1, pp. 125-131, (2011)
[6]  
Bubnova O., Khan Z.U., Malti A., Braun S., Fahlman M., Berggren M., Crispin X., Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene), Nature Materials, 10, 6, pp. 429-433, (2011)
[7]  
Zhang Q., Sun Y.M., Xu W., Zhu D.B., Thermoelectric energy from flexible P3HT films doped with a ferric salt of triflimide anions, Energy & Environmental Science, 5, 11, pp. 9639-9644, (2012)
[8]  
Ma H.K., Lin C., Wu H.P., Peng C.H., Hsu C.C., Waste heat recovery using a thermoelectric power generation system in a biomass gasifier, Applied Thermal Engineering, 88, pp. 274-279, (2015)
[9]  
Bubnova O., Crispin X., Towards polymer-based organic thermoelectric generators, Energy & Environmental Science, 5, 11, pp. 9345-9362, (2012)
[10]  
Bubnova O., Berggren M., Crispin X., Tuning the thermoelectric properties of conducting polymers in an electrochemical transistor, Journal of the American Chemical Society, 134, 40, pp. 16456-16459, (2012)