Diophantine approximation with one prime and three squares of primes

被引:0
作者
Zhixin Liu
Haiwei Sun
机构
[1] Tianjin University,School of Science
[2] Shandong University at Weihai,School of Mathematics and Statistics
来源
The Ramanujan Journal | 2013年 / 30卷
关键词
Diophantine inequalities; Prime; 11J25; 11P32; 11P05; 11P55;
D O I
暂无
中图分类号
学科分类号
摘要
Let λ1,…,λ4 be non-zero real numbers satisfying that λ1/λ2 is irrational and algebraic, and η be a real number. In this note we prove that for any ϵ>0 [graphic not available: see fulltext] has infinitely many solutions in p1,p2,p3,p4. This gives an improvement of an earlier result.
引用
收藏
页码:327 / 340
页数:13
相关论文
共 12 条
  • [1] Baker A.(1967)On some diophantine inequalities involving primes J. Reine Angew. Math. 228 166-181
  • [2] Cook R.J.(2001)The values of ternary quadratic forms at prime arguments Mathematika 48 137-149
  • [3] Fox A.(1991)Diophantine approximation by prime numbers J. Lond. Math. Soc. 44 218-226
  • [4] Harman G.(2004)The values of ternary quadratic forms at prime arguments Mathematika 51 83-96
  • [5] Harman G.(1938)Some results in the additive prime number theory Q. J. Math. 9 68-80
  • [6] Hua L.K.(2011)Diophantine approximation with one prime and three squares of primes Ramanujan J. 25 343-357
  • [7] Li W.P.(2010)Diophantine approximation by primes Glasg. Math. J. 52 87-106
  • [8] Wang T.Z.(1973)On the sums ∑ J. Reine Angew. Math. 262/263 158-165
  • [9] Matomäki K.(2011)( Studia Sci. Math. Hung. 48 421-444
  • [10] Ramachandra K.(1974)) Proc. Lond. Math. Soc. 28 373-384