On Natural Convergence Rate Estimates in the Lindeberg Theorem

被引:0
|
作者
Ruslan Gabdullin
Vladimir Makarenko
Irina Shevtsova
机构
[1] Lomonosov Moscow State University,
[2] Hangzhou Dianzi University,undefined
[3] Federal Research Scientific Center “Informatics and Control” of the Russian Academy of Sciences,undefined
来源
Sankhya A | 2022年 / 84卷 / 2期
关键词
Central limit theorem; Normal approximation; Lindeberg’s condition; Natural convergence rate estimate; Truncated moment; Absolute constant; Primary 60F05; Secondary 60F05;
D O I
暂无
中图分类号
学科分类号
摘要
We prove two estimates of the rate of convergence in the Lindeberg theorem, involving algebraic truncated third-order moments and the classical Lindeberg fraction, which generalize a series of inequalities due to Esseen (Arkiv För Matematik8, 1, 7–15, 1969), Rozovskii (Bulletin of Leningrad University (in Russian), (1):70–75, 1974), & Wang and Ahmad (Sankhya A: Indian J.Stat.78, 2, 180–187, 2016), some of our recent results in Gabdullin, Makarenko, Shevtsova, (J. Math Sci.234, 6, 847–885, 2018, J. Math Sci.237, 5, 646–651, 2019b) and, up to constant factors, also Katz (Ann. Math. Statist.34, 1107–1108, 1963), Petrov (Soviet Math. Dokl.6, 5, 242–244, 1965), & Ibragimov and Osipov (Theory Probab. Appl.11, 1, 141–143, 1966b). The technique used in the proof is completely different from that in Wang and Ahmad (Sankhya A: Indian J.Stat.78, 2, 180–187, 2016) and is based on some extremal properties of introduced fractions which has not been noted in Katz (Ann. Math. Statist.34, 1107–1108, 1963), Petrov (Soviet Math. Dokl.6, 5, 242–244, 1965), & Wang and Ahmad (Sankhya A: Indian J.Stat.78, 2, 180–187, 2016).
引用
收藏
页码:671 / 688
页数:17
相关论文
共 50 条