Positive solutions for discontinuous problems with applications to ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-Laplacian equations

被引:0
|
作者
Radu Precup
Jorge Rodríguez-López
机构
[1] Babeş-Bolyai University,Department of Mathematics
[2] Universidade de Santiago de Compostela,Departamento de Estatística, Análise Matemática e Optimización, Instituto de Matemáticas
[3] Facultade de Matemáticas,undefined
关键词
Discontinuous differential equations; positive solution; multiple solutions; -Laplacian equations; Bohnenblust–Karlin fixed point theorem; 34A36; 34B18; 47H10;
D O I
10.1007/s11784-018-0636-0
中图分类号
学科分类号
摘要
We establish existence and localization of positive solutions for general discontinuous problems for which a Harnack-type inequality holds. In this way, a wide range of ordinary differential problems such as higher order boundary value problems or ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-Laplacian equations can be treated. In particular, we study the Dirichlet–Neumann problem involving the ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-Laplacian. Our results rely on Bohnenblust–Karlin fixed point theorem which is applied to a multivalued operator defined in a product space.
引用
收藏
相关论文
共 50 条