Cellulose composites were produced by culturing Acetobacter aceti subsp. xylinum (ATCC 53524, agitation tolerant strain) under shaking and agitating conditions in the presence of 2% pine or beech Björkman lignin-carbohydrate complexes (LCCs) or six different types of hemicellulosic polysaccharides including glucuronoxylan, glucomannan, O-acetyl-glucuronoxylan, arabinoglucuronoxylan, arabinogalactan and xyloglucan. Hemicellulosic polysaccharide contents in cellulose composites were similar in spite of the differences in culture, shaking and agitating conditions. On the basis of hemicellulosic polysaccharide contents and X-ray diffraction patterns after extraction by dilute NaOH solution, glucomannan family polysaccharides were found to have the highest affinity to bacterial cellulose. Composites with neutral and acidic LCCs were resistant against alkali while high lability of their delignified carbohydrates against alkali indicates the importance of lignin for formation of cellulose-hemicellulose-lignin framework of plant secondary cell-walls.