The Calkin algebra is ℵ1-universal

被引:0
作者
Ilijas Farah
Ilan Hirshberg
Alessandro Vignati
机构
[1] York University,Department of Mathematics and Statistics
[2] Ben Gurion University of the Negev,Department of Mathematics
[3] Bâtiment Sophie Germain,Institut de Mathématiques de Jussieu
来源
Israel Journal of Mathematics | 2020年 / 237卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We discuss the existence of (injectively) universal C*-algebras and prove that all C*-algebras of density character ℵ1 embed into the Calkin algebra, Q(H). Together with other results, this shows that each of the following assertions is relatively consistent with ZFC: (i) Q(H) is a 2ℵ0-universal C*-algebra. (ii) There exists a 2ℵ0-universal C*-algebra, but Q(H) is not 2ℵ0-universal, (iii) A 2ℵ0-universal C*-algebra does not exist. We also prove that it is relatively consistent with ZFC that (iv) there is no ℵ1-universal nuclear C*-algebra, and that (v) there is no ℵ1-universal simple nuclear C*-algebra.
引用
收藏
页码:287 / 309
页数:22
相关论文
共 48 条
[1]  
Brech C(2012)On universal Banach spaces of density continuum Israel Journal of Mathematics 190 93-110
[2]  
Koszmider P(2000)The measure algebra does not always embed Fundamenta Mathematicae 163 163-176
[3]  
Dow A(2001) ℵ Transactions of the American Mathematical Society 353 1819-1838
[4]  
Hart K P(2001)Exactness of Cuntz-Pimsner C*-algebras Proceedings of the Edinburgh Mathematical Society 44 425-444
[5]  
Dow A(1996) ω Fundamenta Mathematicae 151 53-95
[6]  
Hart K P(2010)Graphs and CCR algebras Indiana University Mathematical Journal 59 1041-1056
[7]  
Dykema K J(2014)Absoluteness, truth, and quotients Infinity and Truth, Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore 25 1-24
[8]  
Shlyakhtenko D(2013), Comptes Rendus Mathématiques de l'Académie des Sciences La Société Royale du Canada 35 35-56
[9]  
Farah I(2013)Model theory of operator algebras I: Stability Bulletin of the London Mathematical Society 45 825-838
[10]  
Farah I(2016)The Calkin algebra is not countably homogeneous Proceedings of the American Mathematical Society 144 5351-5357