Rational Normal Forms and Stability of Small Solutions to Nonlinear Schrödinger Equations
被引:0
作者:
Joackim Bernier
论文数: 0引用数: 0
h-index: 0
机构:Univ Rennes,
Joackim Bernier
Erwan Faou
论文数: 0引用数: 0
h-index: 0
机构:Univ Rennes,
Erwan Faou
Benoît Grébert
论文数: 0引用数: 0
h-index: 0
机构:Univ Rennes,
Benoît Grébert
机构:
[1] Univ Rennes,
[2] INRIA,undefined
[3] CNRS,undefined
[4] Laboratoire de Mathématiques Jean Leray,undefined
[5] Université de Nantes,undefined
[6] UMR CNRS 6629,undefined
来源:
Annals of PDE
|
2020年
/
6卷
关键词:
Birkhoff normal form;
Resonances;
Hamiltonian PDEs;
37K55;
35B40;
35Q55;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We consider general classes of nonlinear Schrödinger equations on the circle with nontrivial cubic part and without external parameters. We construct a new type of normal forms, namely rational normal forms, on open sets surrounding the origin in high Sobolev regularity. With this new tool we prove that, given a large constant M and a sufficiently small parameter ε\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon $$\end{document}, for generic initial data of size ε\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon $$\end{document}, the flow is conjugated to an integrable flow up to an arbitrary small remainder of order εM+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon ^{M+1}$$\end{document}. This implies that for such initial data u(0) we control the Sobolev norm of the solution u(t) for time of order ε-M\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon ^{-M}$$\end{document}. Furthermore this property is locally stable: if v(0) is sufficiently close to u(0) (of order ε3/2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon ^{3/2}$$\end{document}) then the solution v(t) is also controled for time of order ε-M\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon ^{-M}$$\end{document}.